Tính giá trị của của P = 1 + i 1 - i 4 + 1 - i 1 + i 4
A. P = 1
B. P = 0
C. P = -2
D. P = 2
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Cho biết I = ∫ 0 π 2 x sin x + 2 m d x = 1 + π 2 . Tính giá trị của m - 1
A. 4
B. 2
C. 3
D. 5
Sử dụng phương pháp tích phân từng phần (hoặc bấm máy tính) ta có được ∫ 0 π 2 x sin x d x = 1
Khi đó
I = 1 + 2 m ∫ 0 π 2 x d x = 1 + m π 2 4 = 1 + π 2 ⇒ m = 4 ⇒ m - 1 = 3
Đáp án C
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
Cho số phức z thỏa mãn | ( z + 2 ) i + 1 | + | ( z ¯ - 2 ) i - 1 | = 10 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Tính tổng S=M+m.
I= tuyệt đối của x+1 + tuyệt đối của x+4 +tuyệt đối của x+3
Tính Giá trị nhỏ nhất của I và với x =bao nhiêu
I = | x + 1 | + | x + 4 | + | x + 3 |
= | x + 3 | + ( | x + 1 | + | x + 4 | )
Ta có :
+) | x + 3 | ≥ 0 ∀ x (1)
+) | x + 1 | + | x + 4 |
= | x + 1 | + | -( x + 4 ) |
= | x + 1 | + | -x - 4 | ≥ | x + 1 - x - 4 | = | -3 | = 3 (2)
Cộng (1) với (2) theo vế
=> | x + 3 | + ( | x + 1 | + | x + 4 | ) ≥ 3 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+3\right|=0\\\left(x+1\right)\left(-x-4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-4\le x\le-1\end{cases}}\Leftrightarrow x=-3\)
=> MinI = 3 <=> x = -3
Cho số phức z thỏa mãn điều kiện z - 1 - 2 i = 4 Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z + 2 + i Tính giá trị của tổng S=M2+ m2
A. S = 82
B. . S = 34
C. S = 68
D. S = 36.
Cho số thực z 1 và số phức z 2 thỏa mãn z 2 - 2 i = 1 và z 2 - z 1 1 + i là số thực. Ký hiệu M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z 1 - z 2 . Tính giá trị của P = M 2 + m 2 ?
A. P=20
B. P= 8 + 8 2
C. P=18
D. P= 10 3
Cho các số phức z 1 = 1 , z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Xét các số phức z thỏa mãn thiết | z + 2 - i| + | z - 4 - 7i|= 6 2 . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của |z – 1 + i|. Tính P = m + M.
Chọn B.
Ta có:
Suy ra:
Xét điểm A(-2; 1) và B(4; 7) , phương trình đường thẳng AB: x - y + 3 = 0.
Gọi M(x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Khi đó ta có và ta thấy , suy ra quỹ tích M thuộc đoạn thẳng AB.
Xét điểm C( 1; -1); ta có , hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Do đó
Vậy
a) Rút gọn A và tìm điều kiện của x để giá trị của A được xác định. b) Tính giá trị của A tại x = -2. c) Tính giá trị của x để giá trị của A = 4. d) Tính giá trị của x để giá trị của A = 1
a) ĐKXĐ: x≠ \(\dfrac{1}{2}\); x≠ \(\dfrac{-1}{2}\); x≠0
A= \(\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\left(\dfrac{2x+1-3-2\left(2x-1\right)}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\left(\dfrac{2x+1-3-4x+2}{4x^2-1}\right):\dfrac{x^2}{2x^2+x}\)
= \(\dfrac{-4x}{\left(2x+1\right)\left(2x-1\right)}.\dfrac{x\left(2x+1\right)}{x^2}\)
= \(\dfrac{-4x^2}{x^2\left(2x-1\right)}\)
= \(\dfrac{-4}{2x-1}\)
b) Tại x= -2 ta có A= \(\dfrac{-4}{2.\left(-2\right)-1}\)= \(\dfrac{4}{5}\)
c) A= 4 ta có \(\dfrac{-4}{2x-1}\)=4
⇔ -4 = 4(2x-1)
⇔ -4 = 8x-4
⇔ x = 0
d) A=1 ta có \(\dfrac{-4}{2x-1}\)=1
⇔ -4 = 2x-1
⇔ x= \(\dfrac{-3}{2}\)