Tìm giá trị nhỏ nhất của hàm số y=x^2+2x-4 trên đoạn [-2;3]
A. – 4
B. – 12
C. 11
D. – 5
Tìm m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn [-2; 1] đạt giá trị nhỏ nhất. Giá trị của m là
A. 4
B. 3
C. 1
D. 2
y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5
Ta có ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1
Giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi
m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3
Chọn B.
Tìm giá trị nhỏ nhất của hàm số y = x - 2 + 4 - x trên đoạn [2;4].
A. m i n 2 ; 4 y = 3 2
B. m i n 2 ; 4 y = 3 2
C. m i n 2 ; 4 y = 2
D. m i n 2 ; 4 y = 2
Tìm giá trị nhỏ nhất của hàm số y = x - 2 + 4 - x trên đoạn [2;4].
A.
B.
C.
D.
Cho hàm số y = x 2 + 2 x + a - 4 . Tìm giá trị a để giá trị lớn nhất của hàm số trên đoạn [ -2;1 ] đạt giá trị nhỏ nhất.
A. a = 3
B. a = 2
C. a = 1
D. Giá trị khác
Ta có y = x 2 + 2 x + a - 4 = x + 1 2 + a - 5
Đặt u = x + 1 2 khi đó ∀ x ∈ - 2 ; 1 thì u ∈ 0 ; 4
Ta được hàm số f u = u + a - 5
Khi đó
M a x x ∈ - 2 ; 1 y = M a x x ∈ 0 ; 4 f u = M a x f 0 , f 4 = M a x a - 5 ; a - 1
Trường hợp 1:
a - 5 ≤ a - 1 ⇔ a ≤ 3 ⇒ M a x x ∈ 0 ; 4 f u = 5 - a ≥ 2 ⇔ a = 3
Trường hợp 2:
a - 5 ≤ a - 1 ⇔ a ≥ 3 ⇒ M a x x ∈ 0 ; 4 f u = a - 1 ≥ 2 ⇔ a = 3
Vậy giá trị nhỏ nhất của M a x x ∈ - 2 ; 1 y = 2 ⇔ a = 3
Đáp án A
Tìm giá trị nhỏ nhất của hàm số y = x 2 + 2 x trên đoạn [1/2; 2]
A. 3
B. -3
C. 4
D. -4
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 3 e - 2 x trên đoạn [-1; 4]
A. m a x 1 ; 4 y = 27 e 2 8 , m i n 1 ; 4 y = 64 e - 8
B. m a x 1 ; 4 y = 27 e = 3 8 , m i n 1 ; 4 y = e - 2
C. m a x 1 ; 4 y = e - 2 , m i n 1 ; 4 y = 64 e - 8
D. m a x 1 ; 4 y = 27 e 2 8 , m i n 1 ; 4 y = 0
Cho hàm số y = x 2 + 2 x + a - 4 Tìm giá trị của a để gá trị lớn nhất của hàm số trên đoạn [-2;1] đát giá trị nhỏ nhất.
A. a = 3
B. a = 2
C. a = 1
D. a = 0
Tìm giá trị nhỏ nhất của hàm số y = x 2 + 2 x - 4 trên đoạn [-2;3].
A. – 4
B. – 12
C. 11
D. – 5
Tìm giá trị nhỏ nhất của hàm số y = 2 x + 1 1 − x trên đoạn 2 ; 3
A.1
B.-2
C.0
D.-5
Đáp án D
y = 2 x + 1 1 − x y ' = 3 ( 1 − x ) 2 > 0 ∀ x ∈ [ 2 ; 3 ] ⇒ min [ 2 ; 3 ] y = y ( 2 ) = − 5