Cho số phức z=a+bi (a,b là các số thực) thỏa mãn z . z ¯ + 2 z + i = 0 .
Tính giá trị của biểu thức T= a + b 2
A. T= 4 3 - 2
B. T= 3 + 2 2
C. T= 3 - 2 2
D. T= 4 + 2 3
Cho số phức z=a+bi a , b ∈ R thỏa mãn z = 5 và z ( 2 + i ) ( 1 - 2 i ) là một số thực. Tính P = a + b .
A. P=5
B. P=7
C. P=8
D. P=4
Cho số phức z thỏa mãn z - 1 + 3 i + z ¯ + 5 + i = 2 65 . Giá trị nhỏ nhất của z + 2 + i đạt được khi z = a + b i với a, b là các số thực dương. Giá trị của 2 b + 3 a bằng
A. 19
B. 16
C. 24
D. 13
Chọn đáp án B.
Cách 1: (Sử dụng kiến thức Hình học)
Gọi M, A, B, I lần lượt là điểm biểu diễn cho các số phức
Có I là trung điểm của đoạn thẳng AB và
Áp dụng bất đẳng thức Cô-si, ta có
Cách 2: (Sử dụng kiến thức Đại số)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xky, ta có
Cho số phức z thỏa mãn z - 1 + 3 i + z ¯ + 5 + i = 2 65 Giá trị nhỏ nhất của z + 2 + i đạt được khi z = a + b i với a,b là các số thực dương. Giá trị của 2 a 2 + b 2 bằng
Cho số phức z = a+bi(a,b ϵ ℝ) thỏa mãn |z|=5z và z(2+i)(1-2i) là một số thực. Tính giá trị P=|a|+|b|
A.P=8
B.P=4
C.P=5
D. P=7
Cho số phức z thỏa mãn
|z - 1 + 3i|+|z + 5 + i| = 2 65 Giá trị nhỏ nhất của
|z + 2 + i| đạt được khi z = a + bi với a,b là các số thực dương. Giá trị của 2 a 2 + b 2 bằng
A. 17
B. 33
C. 24
D. 36
Số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 2 = z và ( z + i ) ( z ¯ - i ) là số thực.
Giá trị của biểu thức S=a+2b bằng bao nhiêu?
A. S=-1
B. S=1
C. S=0
D. S=-3
Đáp án D
Phương pháp giải:
Đặt z=a+bi thực hiện yêu cầu bài toán, chú ý số phức là số thực khi phần ảo bằng 0
Lời giải:
Ta có
Khi đó
Khi và chỉ khi b + 2 = 0 ⇔ b = - 2
Vậy S=a+2b= -3
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Số phức z = a + bi thỏa mãn z - 2 = z và z + 1 z - i là số thực. Giá trị của biểu thức S = a + 2b bằng bao nhiêu?
A. S = -1
B. S = 1
C. S = 0
D. S = -3
Gọi số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn |z-1| = 1 và (1+i)( z ¯ -1) có phần thực bằng 1 đồng thời z không là số thực. Khi đó a, b bằng
A. a.b = 1
B. a.b = 2
C. a.b = -2
D. a.b = -1
Đáp án A
Ta có
Số phức có phần số thực bằng
a + b - 1 = 1(2)
Từ (1), (2) suy ra:
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1