Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Kim Anh
Xem chi tiết
Trịnh Phan Hoàng Anh
16 tháng 4 2019 lúc 19:55

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

My Love bost toán
Xem chi tiết
My Love bost toán
8 tháng 11 2018 lúc 17:59

mk viết thiếu xin lỗi nha

a,\(\sqrt{ab},\sqrt{cd}\)là hai số nguyên tố

b, \(\sqrt{ab}+c=b^2+d\)

My Love bost toán
8 tháng 11 2018 lúc 18:00

bạn nào trả lời được mk cho 6 tích

các bạn giúp mk nha

........................

Trịnh Phan Hoàng Anh
16 tháng 4 2019 lúc 19:54

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

Đàm Thị Minh Hương
Xem chi tiết
Hương Đinh Tử
2 tháng 5 2016 lúc 8:30

kkkkkkk

k

kk

k

k

2311

521

1520

Đàm Thị Minh Hương
2 tháng 5 2016 lúc 8:37

Giúp mih vs

Dragon
Xem chi tiết
Đinh Thị Thảo Vi
Xem chi tiết
Trịnh Phan Hoàng Anh
16 tháng 4 2019 lúc 19:55

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

An Nguyễn Thành
Xem chi tiết
Trịnh Phan Hoàng Anh
16 tháng 4 2019 lúc 19:56

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

Lê như gia vũ
30 tháng 1 lúc 19:25

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

FFPUBGAOVCFLOL
Xem chi tiết
Kiệt Nguyễn
6 tháng 3 2020 lúc 21:23

Theo gt: ab là số nguyên tố nên b lẻ và b khác 5 (vì khi b = 5 thì a5 chia hết cho 5, vô lí)

\(\overline{db}+c=b^2+d\)

\(\Rightarrow10d+b+c=b^2+d\)

\(\Rightarrow9d+c=b\left(b-1\right)\)

Vì c,d là các chữ số nên \(9d+c\ge9\Rightarrow b\left(b-1\right)\ge9\)

\(\Rightarrow b>3\)

Từ đó suy ra b = 7 hoặc b = 9

+) b = 7 thì \(9d+c=42\Rightarrow3< d< 5\Rightarrow d=4\)(vô lí)

+) b=  9 thì \(9d+c=72\Rightarrow7\le d\le8\Rightarrow d=7\)(vì d lẻ)

Vậy số cần tìm là 1997

Khách vãng lai đã xóa
Dương Tiến	Khánh
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Lê Thị Thùy Linh
18 tháng 1 2018 lúc 19:38
Do ab¯ab¯,ad¯ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1) từ (gt) db¯+c=b2+ddb¯+c=b2+d (2) \Leftrightarrow 10d+b+c=b2+d10d+b+c=b2+d \Leftrightarrow 9d+c=b2−b=b(b−1)9d+c=b2−b=b(b−1) VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9 +Với b = 7 thì 9d+c=42 => 3
Trịnh Phan Hoàng Anh
16 tháng 4 2019 lúc 19:55

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

Nguyễn Hậu Cung
23 tháng 2 2020 lúc 11:44

Vì ab;ad là số nguyên tố Nên b;d thuộc (1;3;7;9)     (Vì nếu b;d thuộc (2;4;6;8) thì ab chia hết cho 2 và nó suy ra ko là số ng.tố còn nếu b;d = 5 thì b;d chia hết cho 5 ko là số ng .tố

Vì db+c=b^2+d Nên 10d+b+c=b^2+d =>10d+c+b-b^2=d => 10d+c+b(1-b)=d

Xét d=1. Thì b(1-b)+c=-9.   Mà 0_<c;b_<-9        ( _< là bé hơn hoặc bằng)

Nên 18_<b(1-b)_<-9 =>b=4 (loại)

Tương tự thế so sánh với 3 và 9

Nếu d=7 => 70+c+b(1-b)=7  => c+b(1-b)= -63

Mà 0_<c;b_<9 Nên -78 _<b(1-b)_<-63 => c+(-72)= -63 =>c=9

Nếu d=7;b=9. Thì ad;ab là số ng.tố  <=> a=1

VẬY ABCD= 1997

Khách vãng lai đã xóa