tim n thuoc Z
[11-7n] chia het n
[3n-1]chia het [n-1]
tim n thuoc n biet
f,n cong 15 chia het n tru 4
g,9n cong 23 chia het 3n cong 4
h,48-7n chia het n
k, 5n cong 11 chia het n -1
m,n mu2 cong 8n cong 13 chia het n cong 2
tim n thuoc Z
a) 3n+2 chia het n-1
b) 3n+24 chia het n-4
a,Ta có:3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết co n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,Ta có:3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
=>n-4\(\in\)Ư(36)={-36,-18,-12,-9,-6,-4,-3,-2,-1,1,2,3,4,6,9,12,18,36}
=>n\(\in\){-32,-14,-8,-5,-2,0,1,2,3,5,6,7,8,10,13,16,22,40}
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n - 1 + 3 chia hết cho n - 1
=> 3(n-1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 \(\in\) Ư(3) = {+1;+3}
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => n = -2
Vậy n \(\in\) {2;0;4;-2}
b) Ta có : 3n + 24 chia hết cho n - 4
=> 3n - 4 + 28 chia hết cho n - 4
... Tương tự câu a
tim n:
a, (n-1) chia het cho 11
b, (n+11) chia het cho (n-1)
c, (3n+24) chia het cho (n-4)
d, 7n chia het cho (n-3)
Tim n thuoc N
a) n+5 chia het cho n
b) 3n+13 chia het cho n
c) 27-5n chia het cho n
d) 2n+3 chia het cho n-2
e) 3n+1 chia het cho 11-2n
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe
bai 1:Tim n thuoc Z
a)n-1 chia het cho n+5
b) 3n+2 chia het cho n-1
a)n-1 chia hết cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {-6;-4;-7;-3;-11;1}
b) 3n+2 chia het cho n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc{0;2;-4;6}
a)<=>(n+5)-6 chia hết n+5
=>6 chia hết n+5
=>n+5\(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){-6,-7,-8,-11,-4,-3,-2,1}
b)3(n-1)+3 chia hết n-1
=>9 chia hét n-1
=>n-1\(\in\){-1,-,3,-9,1,3,9}
=>n\(\in\){0,-2,-8,2,4,10}
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
tim n thuoc Z
a)n^2+4chia het cho n-1
b)3n-1 chia het cho 2-n
c)n-7 chia het cho 2n+3
phần c
\(n-7⋮2n+3\)
\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
\(2n-4-2n-3⋮2n+3\)
\(-7⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng xét :
2n+3 | -1 | 1 | -7 | 7 |
2n | -4 | -2 | -10 | 4 |
n | -1 | 1 | -5 | 2 |
Tim n thuoc z, sao cho 3n +11 chia het cho 7 - 2n
Ta có: 3n+11 chia hết cho 7-2n => 2(3n+11) chia hết cho 7-2n => 6n+22 chia hết cho 7-2n
7-2n chia hết cho 7-2n => 3(7-2n) chia hết cho 7-2n => 21-6n chia hết cho 7-2n
=> 6n+22+(21-6n) chia hết cho 7-2n
=> 43 chia hết cho 7-2n
=> 7-2n thuộc Ư(43)={1;-1;43;-43}
=> 2n thuộc {6;8;-36;50}
=> n thuộc {3;4;-18;25}
tim n thuoc N de
15-1 chia het cho 3n+2
3n chia het n-1