Trong không gian với hệ toạ độ Oxyz, tìm tất cả các giá trị của m để phương trình x 2 + y 2 + z 2 - 2 m + 2 x + 4 m y - 2 m z + 5 m 2 + 9 = 0 là phương trình của một mặt cầu.
A. -5 < m < 5
B. m < - 5 h o ặ c m > 1
C. m < -5
D. m > 1
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ : x - 1 1 = y + 2 2 = z + 1 - 1 và mặt phẳng ( α ) :mx+10y-5z+1=0. Tìm tất cả các giá trị của tham số m để Δ ⊥ ( α ) .
A. m=-25.
B. m=5.
C. m=25.
D. m=-5.
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : x + 1 2 = 1 - y - m = 2 - z - 3 và d 2 : x - 3 1 = y 1 = z - 1 1 . Tìm tất cả các giá trị thực của m để d 1 ⊥ d 2 được:
A. -1
B. 1
C. -5
D. 5
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị m để phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là phương trình của một mặt cầu.
Trong không gian với hệ tọa độ Oxyz cho S : x - 2 2 + y - 1 2 + z + 1 1 = 1 là phương trình mặt cầu và P : 3 x - 2 y + 6 z + m = 0 là phương trình mặt phẳng. Tìm tất cả các giá trị thực của m để mặt cầu (P) và mặt phẳng có điểm chung.
A. m > 3; m < 2
B. 2 ≤ m ≤ 3
C. - 5 ≤ m ≤ 9
D. m > 9; m < -5
Mặt cầu (S) có tâm I(2;1;-1) và bán kính R = 1
Mặt cầu (S) và mặt phẳng (P) có điểm chung với nhau khi và chỉ khi
Trong không gian với hệ trục tọa độ Oxyz , cho đường thẳng d có phương trình x = 6 + t y = - 2 - 5 t z = - 1 + t . Xét đường thẳng ∆ : x - a 5 = y - 1 - 12 = z + 5 - 1 , với a là tham số thực. Tìm tất cả các giá trị của a để đường thẳng d và ∆ cắt nhau.
A. a = 0
B. a = 4
C. a = 8
D. a = 1 2
Đáp án C
Ta có ∆ : x = a + 5 t ' y = 1 - 12 t ' t ' ∈ ℝ z = - 5 - t ' ⇒ giải hệ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇔ 6 + t = a + 15 t ' - 2 - 5 t = 1 - 12 t ' - 1 + t = - 5 - t ' ⇒ a = 8
Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình x 2 + y 2 + z 2 - 2 m + 1 y + 4 z + 8 = 0 là phương trình mặt cầu.
A. - 1 - 2 15 < m < - 1 + 2 15
B. m > - 1 + 2 15 h o ặ c m < - 1 - 2 15
C. -3 < m < 1
D. m < - 3 h o ặ c m > 1
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu.
Đáp án B.
Để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu thì
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu.
A . m > 0
B . m ≠ 0
C . m ∈ R
D . m > 0
Trong không gian hệ tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là phương trình của một mặt cầu.
A. m ≤ 6
B. m>6
C. m<6
D. m ≥ 6
Chọn C
Phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là một phương trình mặt cầu