Chọn C
Phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là một phương trình mặt cầu
Chọn C
Phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là một phương trình mặt cầu
Trong không gian với hệ trục tọa độ Oxyz, có tất cả bao nhiêu số tự nhiên của tham số m để phương phương trình x 2 + y 2 + z 2 + 2 ( m - 2 ) y - 2 ( m + 3 ) z + 3 m 2 + 7 = 0 là phương trình của một mặt cầu.
A. 2
B. 3
C. 4
D. 5
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị m để phương trình x 2 + y 2 + z 2 - 2 x - 2 y - 4 z + m = 0 là phương trình của một mặt cầu.
Trong không gian Oxyz, cho phương trình x 2 + y 2 + z 2 - 2 ( m + 2 ) x + 4 m y - 2 m z + 5 m 2 + 9 = 0 . Tìm tất cả các giá trị của m để phương trình trên là phương trình của một mặt cầu
Trong không gian với hệ tọa độ Oxyz, cho phương trình x 2 + y 2 + z 2 - 2 ( m + 2 ) x - 4 m y + 2 m z + 5 m 2 + 9 = 0 .
Tìm m để phương trình đó là phương trình của một mặt cầu.
A. -5<m<1
B. m<-5 hoặc m>1
C. m<-5
D. m>1
Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình x 2 + y 2 + z 2 - 4 x + 2 m y + 6 z + 13 = 0 là phương trình của mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng ∆ : x - 6 - 3 = y - 2 2 = z - 2 2 . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
A.x-2y+2z-1=0.
B.2x+2y+z-18=0.
C.2x-y-2z-10=0.
D.2x+y+2z-19=0.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + y 2 + ( z - 2 ) 2 = m 2 + 4 . Tìm tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz).
Trong không gian tọa độ Oxyz, cho mặt cầu (s): x - 1 2 + y 2 + ( z + 2 ) 2 = 2 và α : x + y - 4z + m = 0. Tìm các giá trị của m để tiếp xúc với (S).
Trong không gian Oxyz , cho ba mặt cầu lần lượt có phương trình là ( x + 5 ) 2 + ( y - 1 ) 2 + z 2 = 5 ; x 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 6 và ( x + 1 ) 2 + y 2 + ( z - 4 ) 2 = 9 . Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y , Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu. Giả sử MX = MY = MZ , khi đó tập hợp các điểm M là đường thẳng có vectơ chỉ phương là