Cho tứ diện đều ABCD có mặt cầu nội tiếp là S 1 và mặt cầu ngoại tiếp là S 2 . Một hình lập phương ngoại tiếp S 2 và nội tiếp trong mặt cầu S 2 . Gọi r 1 , r 2 , r 3 lần lượt là bán kính các mặt cầu S 1 , S 2 , S 3 . Khẳng định nào sau đây đúng?
Cho tứ diện đều ABCD có mặt cầu nội tiếp là S 1 và mặt cầu ngoại tiếp là S 2 . Một hình lập phương ngoại tiếp S 2 và nội tiếp trong mặt cầu S 2 . Gọi r 1 , r 2 , r 3 lần lượt là bán kính các mặt cầu ( S 1 ) , ( S 2 ) , ( S 3 ) . Khẳng định nào sau đây đúng?
A. r 1 r 2 = 2 3 và r 2 r 3 = 1 2 .
B. r 1 r 2 = 2 3 và r 2 r 3 = 1 3 .
C. r 1 r 2 = 1 3 và r 2 r 3 = 1 3 .
D. r 1 r 2 = 1 3 và r 2 r 3 = 1 3 3 .
Cho tứ diện đều ABCD có mặt cẩu nội tiếp là (S1) và mặt cầu ngoại tiếp là (S2). Một hình lập phương ngoại tiếp (S2) và nội tiếp trong mặt cầu (S3). Gọi r 1 , r 2 , r 3 lần lượt là bán kính các mặt cầu (S1), (S2), (S3). Khẳng định nào sau đây là đúng
A. r 1 r 2 = 2 3 và r 2 r 3 = 1 3
B. r 1 r 2 = 2 3 và r 2 r 3 = 1 2
C. r 1 r 2 = 1 3 và r 2 r 3 = 1 3
D. r 1 r 2 = 1 3 và r 2 r 3 = 1 3 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y 2 + z − 2 2 = 9 ngoại tiếp khối bát diện (H) được ghép từ hai khối chóp tứ giác đều S.ABCD và S’.ABCD (đều có đáy là tứ giác ABCD). Biết rằng đường tròn ngoại tiếp của tứ giác ABCD là giao tuyến của mặt cầu (S) và mặt phẳng P : 2 x + 2 y − z − 8 = 0 . Tính thể tích khối bát diện (H)
A. V H = 34 9 .
B. V H = 665 81 .
C. V H = 68 9 .
D. V H = 1330 81 .
Đáp án C
Mặt cầu (S) có tâm I 1 ; 0 ; 2 , bán kính R=3. Nhận xét thấy S, I, S’ thẳng hàng và S S ' ⊥ A B C D . Khi đó S S ' = 2 R = 6 . Ta có:
V H = V S . A B C D + V S ' . A B C D = 1 3 d S ; A B C D . S A B C D + 1 3 d S ' ; A B C D . S A B C D
= 1 3 d S ; A B C D + d S ' ; A B C D . S A B C D = 1 3 S S ' . S A B C D = 2 S A B C D
Từ giả thiết suy ra ABCD là hình vuông, gọi a là cạnh hình vuông đó.
Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng r và ngoại tiếp hình vuông ABCD.
Suy ra 2 r = A C = a 2 ⇒ r = a 2 2 . Từ d I ; P 2 + r 2 = R 2 .
⇔ r = R 2 − d I ; P 2 = 3 2 − 8 3 2 = 17 3 = a 2 2 ⇔ a = 2 17 3 2
Vậy V H = 2 S A B C D = 2 a 2 = 2. 2 17 3 2 2 = 68 9 .
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y 2 + z − 2 2 = 9 ngoại tiếp khối bát diện (H) được ghép từ hai khối chóp tứ giác đều S.ABCD và S’.ABCD (đều có đáy là tứ giác ABCD). Biết rằng đường tròn ngoại tiếp của tứ giác ABCD là giao tuyến của mặt cầu (S) và mặt phẳng P : 2 x + 2 y − z − 8 = 0 . Tính thể tích khối bát diện (H)
A. V H = 34 9 .
B. V H = 665 81 .
C. V H = 68 9 .
D. V H = 1330 81 .
Một mặt cầu (S) ngoại tiếp tứ diện đều cạnh a. Diện tích mặt cầu (S) là:
Trong không gian Oxyz, cho tứ diện đều ABCD có A(0;1;2). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (BCD). Cho H(4;-3;-2). Tọa độ tâm I và bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD là:
A. I(2; -1; 0); R = 2 3
B. I(4; -3; -2); R = 4 3
C. I(3; -2; -1); R = 3 3
D. I(3; -2; -1); R = 9
Đáp án C
Do ABCD là tứ diện đều nên H là trọng tâm tam giác BCD và I trùng với trọng tâm G của tứ diện ABCD. Ta có:
Từ đó ta có:
Vậy đáp án C đúng.
Gọi r , R lần lượt là bán kính mặt cầu nội tiếp và ngoại tiếp tứ diện đều ABCD. Tính tỉ số R r ?
Cho tứ diện đều ABCD có độ dài cạnh bằng a, (S) là mặt cầu tiếp xúc với sáu cạnh của tứ diện ABCD, M là điểm thay đổi trên mặt cầu (S). Tính tổng
T = M A 2 + M B 2 + M C 2 + M D 2
A. 3 a 2 8
B. a 2
C. 4 a 2
D. 2 a 2
Cho tứ diện đều ABCD có độ dài cạnh bằng a, (S) là mặt cầu tiếp xúc với sáu cạnh của tứ diện ABCD, M là điểm thay đổi trên mặt cầu (S). Tính tổng T = M A 2 + M B 2 + M C 2 + M D 2 .
A. 3 a 2 8
B. a 2
C. 4 a 2
D. 2 a 2
Đáp án D
Với tứ diện đều ABCD thì mặt cầu (S) là mặt cầu có tâm trùng với tâm của mặt cầu ngoại tiếp tứ diện ABCD và là trọng tâm của tứ diện đều cạnh a, đồng thời có bán kính R = a 2 4
Gọi G là trọng tâm của tứ diện ⇒ G A ¯ + G B ¯ + G C ¯ + G D ¯ = 0 ¯
Ta có:
T = M A 2 + M B 2 + M C 2 + M D 2 = M G ¯ + G A ¯ 2 + M G ¯ + G B ¯ 2 + M G ¯ + G C ¯ 2 + M G ¯ + G D ¯ 2
= 4 M G 2 + 2 M G ¯ G A ¯ + G B ¯ + G C ¯ + G D ¯ ⏟ 0 + G A 2 + G B 2 + G C 2 + G D 2 = 4 M G 2 + 4 G A 2
= 4 a 2 4 2 + 4 a 6 4 2 = 2 a 2 . Vậy T = M A 2 + M B 2 + M C 2 + M D 2 = 2 a 2