Giả sử đa thức P ( x ) = x 5 - a x 4 + b có năm nghiệm x 1 ; x 2 ; x 3 ; x 4 ; x 5 Đặt f ( x ) = x 2 - 4 Tìm giá trị nhỏ nhất của P = f ( x 1 ) f ( x 2 ) f ( x 3 ) f ( x 4 ) f ( x 5 )
A. 512
B. -512
C. 1024
D. -1024
Giả sử a là nghiệm của đa thức f ( x ) = 3 x + 4 , b là nghiệm của đa thức g ( x ) = - 4 x - 5 . Kết luận nào sau đây là đúng?
A. a < b
B. a > b
C. a = b
D. Không kết luận được
Chọn A
Ta có f(x) = 0 ⇒ 3x + 4 = 0 ⇒ x = -4/3 ⇒ a = -4/3
g(x) = 0 ⇒ -4x - 5 = 0 ⇒ x = -5/4 ⇒ b = -5/4
Vì -4/3 < -5/4 nên a < b.
Giả sử đa thức \(P\left(x\right)=x^5+x^2+1\) có năm nghiệm là a, b, c, d, e. Xét đa thức \(Q\left(x\right)=x^2-2\) . Tính tích \(Q\left(a\right).Q\left(b\right).Q\left(c\right).Q\left(d\right).Q\left(e\right)\)
vì a,b,c,d,e là năm nghiệm của P(x)
\(\Rightarrow P\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)\left(x-e\right)\)
Ta có :
\(Q\left(a\right)=a^2-2=-\left(2-a^2\right)=-\left(\sqrt{2}-a\right)\left(\sqrt{2}+a\right)=\left(\sqrt{2}-a\right)\left(-\sqrt{2}-a\right)\)
\(Q\left(b\right)=\left(\sqrt{2}-b\right)\left(-\sqrt{2}-b\right)\)
....
\(Q\left(e\right)=\left(\sqrt{2}-e\right)\left(-\sqrt{2}-e\right)\)
\(\Rightarrow Q\left(a\right).Q\left(b\right).Q\left(c\right).Q\left(d\right).Q\left(e\right)=\left(\sqrt{2}-a\right)\left(\sqrt{2}-b\right)\left(\sqrt{2}-c\right)\left(\sqrt{2}-d\right).\left(\sqrt{2}-e\right)\left(-\sqrt{2}-a\right)\left(-\sqrt{2}-b\right)\left(-\sqrt{2}-c\right)\left(-\sqrt{2}-d\right)\left(-\sqrt{2}-e\right)\)
\(=P\left(\sqrt{2}\right).P\left(-\sqrt{2}\right)=-23\)
Giả sử đa thức \(P\left(x\right)=x^5+x^2+1\) có năm nghiệm là a, b, c, d, e. Xét đa thức \(Q\left(x\right)=x^2-2\) . Tính tích \(Q\left(a\right).Q\left(b\right).Q\left(c\right).Q\left(d\right).Q\left(e\right)\)
Giải phương trình: x⁴+4a²-7x-10=0
Xác định số huh a,b để đa thức x²+ax+b chia hết cho đa thức x²-x-2
Bài 2
Cho n/ (n^2 - n -1)= a. Tính P=n²/ n⁴+n²+1 theo a
Giả sử các số hữu tỉ x,y thoả mãn x^5 + y^5= 2x²y² . CMR 1-xy là bình phương của một số hữu tỉ
Cho đa thức f(x) = x^2+ax+b; a, b ∈ R. Giả sử phương trình f (f(x)) = 0 có 4 nghiệm thực phân biệt và tổng của hai trong bốn nghiệm đó bằng −1. Chứng minh rằng b ≤ − 1/4
giả sử đa thức f(x) chia cho x+1 dư 4, và chia cho x^2 +1 có dư là 2x+3 tìm dư trong phép chia đa thức f(x) cho (x+1)(x^2+1)
Giả sử f(x) và g(x) là hai đa thức có bậc không quá n và có giá trị trùng nhau tại n+1 điểm khác nhau. CMR f(x)=g(x) với mọi x
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
giả sử a,b,c là các hằng số sao cho a+c=b
chứng minh rằng đa thức f(x)=ax2+bx+c có một nghiệm x=-1
Ta có \(f\left(x\right)=ax^2+bx+c\)
Thay x=-1 ta có:\(f\left(-1\right)=a-b+c=a+c-b\)
mà \(a+c=b\)
nên \(f\left(-1\right)=a+c-b=b-b=0\)
Vậy f(x)=ax^c+bx+c có nghiệm là -1