Tìm tất cả các giá tri thực của tham số m để bất phương trình 2 3 x + m − 1 3 x + m − 1 > 0 nghiệm đúng với mọi x ∈ ℝ
A. m ∈ ℝ
B. m > 1
C. m ≤ 1
D. m ≥ 1
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Tìm tất cả các giá trị thực của tham số m để bất phương trình mx^2 + (m-1)x +m -1
Tìm tất cả các giá tri thực của tham số m để phương trình log 2 2 x + log 2 x + m = 0 có nghiệm thực x ∈ 0 ; 1 là:
Tìm tất cả các giá trị thực của tham số m để bất phương trình -2x2 +2(m-2)x+m-2<0 có nghiệm
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình x - 3 < 0 m - x < 1 vô nghiệm.
A. m < 4
B. m > 4
C. m ≤ 4
D. m ≥ 4
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Tìm tất cả các giá trị thực của tham số m để bất phương trình log 2 5 x - 1 . log 2 2 . 5 x - 2 ≥ m có nghiệm x ≥ 1
A. m ≥ 6
B. m > 6
C. m ≤ 6
D. m < 6
Đáp án C.
Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m
Đặt t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )
Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m
Với f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0 với t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6
Do đó theo bài ra để bất phương trình có nghiệm x ≥ 1 thì m ≤ min f ( t ) ⇔ m ≤ 6
Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x + 3 + 5 - 2 x ≤ m nghiệm đúng với mọi x ∈ - ∞ ; log 2 5
A. m ≥ 4
B. m < 4
C. m ≥ 2 2
D. m < 2 2
Cho bất phương trình x 4 + x 2 + m 3 - 2 x 2 + 1 3 + x 2 x 2 - 1 > 1 - m (m là tham số). Tìm tất cả các giá trị thực của tham số m để bất phương trình nghiệm đúng với mọi x > 1
A. m > 1
B. m ≥ 1
C. m > 5 4
D. m ≥ 5 4
Khi đó bất phương trình trở thành
Suy ra hàm số f(x) đồng biến trên
Do đó yêu cầu bài toán
Chọn B.
Tìm tất cả các giá trị thực của tham số m để bất phương trình log 1 2 x - 1 > log 1 2 x 3 + x - m có nghiệm
A. mÎR
B. m < 2
C. m ≤ 2
D. Không tồn tại m