Tim so nguyen x biet:
a, 82-(15+x)=72
b,(x-9).(x+2)=0
Tim cac so nguyen x,y biet:a)*x2 -3*x+1 chia het cho x+2 b)x2-xy = 5x-4y-9 c) (x2-8)*(x2-15)<0 d) (x+1)2+(y+1)2+(x-y)2=2 e) (x2-4)x2>0 ai lam truoc minh tick,mai minh di hoc rui,lam giup minh di pls Thank ban truoc ne ;(
tim so nguyen x biet:a,(x2+8).(x2-9) = 0 b, (x2-5).(x2-25)<0 c,(x-3).(x+7)<0
tim x nguyen biet:
a 8.(x mu 2 +3).(5-x)
b)(2x + 1)mu 2=25
c) (1-3x)mu3 =64
d)(4-x)mu3 =-27
e) xmu2 -5x =0
b: \(\left(2x+1\right)^2=25\)
=>\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left(1-3x\right)^3=64\)
=>\(\left(1-3x\right)^3=4^3\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1
d: \(\left(4-x\right)^3=-27\)
=>\(\left(4-x\right)^3=\left(-3\right)^3\)
=>4-x=-3
=>x=4+3=7
e: \(x^2-5x=0\)
=>\(x\left(x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Cau 3 (2 diem). Tim so tu nhien x, biet:
a. 123 - x =38
b. (x+15) - 7 =33
c. 3x+3 - 13=230
`123-x=38`
`=> x= 123-38`
`=>x=85`
Vậy `x=85`
__
`(x+15) -7=33`
`=>x+15=33+7`
`=>x+16= 40`
`=>x=40-16`
`=>x=24`
Vậy `x=24`
__
`3^(x+3) -13=230`
`=> 3^(x+3) = 230+13`
`=>3^(x+3)=243`
`=> 3^(x+3)=3^5`
`=> x+3=5`
`=>x=5-3`
`=>x=2`
Vậy `x=2`
Tim so nguyen x bt
(x - 9 ) . (x + 2 ) = 0
Tim so nguyen n sao cho 2n - 1 là bội của n + 3
Tìm x : cho lần lượt x-9=0 rồi x+2=0 là được x=9 và x=-2
Còn 2n-1=2(n+3) + 7 => 2n-1 là bội của n+3 thì 2(n+3)+7 chia hết cho n+3 => (n+3) là ước của 7 giải ra tìm đc n
Sửa lại chỗ 2n-1= 2(n+3)-7 nhé rùi giải tương tự
(x^2-5)(x^2-10)(x^2-15)(x^2-25)<0
tim so nguyen x
1 tim so nguyen x biet
A. x + x + x + 82 =( -2 ) - 2
x + x + x + 82 = (-2)-2
X x 3 + 82 = (-4)
X x 3 = (-4)-82
X x 3 =-86
x=(-86):3
Suy ra không tồn tại số nguyên x
tim x biet:a.2x^2-1=17/8;b.(2x-0,05)(x+3)>0;c.(7-x)(x+19)>0
tim cac so nguyen x biet
a) (2x - 10 )(x + 3)=0
b)(x+ 5)(x2 - 9)=0
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Vậy .........
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy ......
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=3or-3\end{cases}}}\)