Với các số phức z thỏa mãn z - 2 + i = 4 , tập hợp các điểm biểu diễn của số phức z là một đường tròn. Tìm bán kính R của đường tròn đó.
A. R=2
B. R=16
C. R=8
D. R=4
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2
Với các số phức z thỏa mãn|z-2+i|=4, tập hợp các điểm biểu diễn của số phức z là một đường tròn. Tìm bán kính R của đường tròn đó.
A. R = 2
B. R = 16
C. R = 8
D. R = 4
Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn 2|z-i|=|z- z +2i| là:
A. Đường tròn tâm I(0;1), bán kính R = 1
B. Đường tròn tâm I( 3 ;0), bán kính R = 3
C. Parabol y = x 2 4
D. Parabol x = y 2 4
Trong các số phức z thỏa mãn | z - 2 + i | = | z ¯ + 1 -4i | , tìm số phức có mô-đun nhỏ nhất.
A. z = 1
B. z = 1 - i
C. z = -1 - i
D. z = 2 - i
Chọn C.
Giả sử z = a+ bi. Khi đó:
z – 2 + i = ( a - 2) + ( b + 1) i và
Vậy z = -1 - i thỏa mãn đề bài.
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Xét các số phức z thỏa mãn điều kiện z - 1 + i = 2 Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 -i là
A. đường tròn tâm I(-3;2), bán kính R = 2.
B. đường tròn tâm I(3;-2), bán kính R = 2.
C. đường tròn tâm I(1;0), bán kính R =2.
D. đường tròn tâm I(1;-1), bán kính R = 2.
Trong các số phức thỏa mãn điều kiện z + 3 i = z + 2 - i Tìm số phức có môđun nhỏ nhất ?
A. z = 1 -2i
B. z = - 1 5 + 2 5 i
C. z = 1 5 - 2 5 i
D. z = -1+2i
Trong các số phức thỏa mãn điều kiện | z + 3 i | = | z + 2 - i | . Tìm số phức có môđun nhỏ nhất?
A. z = 1 - 2 i
B. z = - 1 5 + 2 5 i
C. z = 1 5 - 2 5 i
D. z = -1 + 2i