Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Hoang Hung Quan
29 tháng 4 2017 lúc 23:16

Giải:

a) Hình vẽ:

A D B H K C

Xét hai tam giác vuông \(AHD\)\(AKB\) ta có:

\(AD=AB\) (cạnh hình thoi)

\(\widehat{D}=\widehat{B}\) (hai góc đối hình thoi)

Do đó: \(\Delta AHD=\Delta AKB\) (cạnh huyền - góc nhọn)

\(\Rightarrow AH=AK\) (Đpcm)

b) Hình vẽ:

A D B H K C 1 2

Cách 1: Ta có: \(\Delta AHD=\Delta AKB\left(g.c.g\right)\)

\(\Rightarrow AD=AK\)

Hình bình hành \(ABCD\) có hai cạnh kề bằng nhau nên là hình thoi (Đpcm)

Cách 2: Ta có: \(\Delta AHC=\Delta AKC\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)

Hình bình hành \(ABCD\) có một đường chéo là phân giác của một góc nên là hình thoi (Đpcm)

Nguyen Thuy Hoa
30 tháng 6 2017 lúc 14:02

Hình thoi

the
Xem chi tiết
thu trang
4 tháng 11 2016 lúc 19:54
a,xét 2 tan giác vuông ABH và AKD có: ^H=^K=90ĐỘ ab=ad(GT) ^B=^D(T/C hình thoi) =>tam giác AHB=tam giác AKD( cạnh huyền-góc nhọn) =>AH=AK b,ta có:^a1+^a2=90độ (tổng 2 góc nhọn trong tam giác vuông) ^a2+^b=90độ(như trên) mà ^d=^b( 2 góc đối) =>^a1=^a2 xét tam giác ADH và ABK có: ^a1=^a2(cmt) AH=AK(gt) ^h=^k=90độ =>tam giác ADH=ABK(g.c.g)=>AD=AB(tương ứng) -hình bình hành có 2 cạnh liên tiếp AD=AB =>ABCD là hình thoi =>
Võ Anh Quân
21 tháng 11 2017 lúc 20:39

A B C D H K

xét \(\Delta\)ACK và ABH có 

AB=AC(tc hình thoi)

\(\widehat{AKC}=\widehat{AHB}=90^o\)

\(\widehat{B}=\widehat{C}\)

theo trường hợp cạnh huyền góc nhọn

=>AH=AK (2 cạnh tương ứng)

b)
A B C D H K

xét \(\Delta\)AKDvà \(\Delta\)AHB

\(\widehat{AHB}=\widehat{AK\text{D}}=90^o\)

AH=AK(gt)

\(\widehat{B}=\widehat{D}\)(tính chất HBH)

=>AB=AD(2 cạnh tương ứng)

ABCD là hình thoi vì là HBH có 2 cạnh kề bằng nhau

Mann
Xem chi tiết
Thư Phan
21 tháng 11 2021 lúc 10:37

Tham khảo

lê thanh tình
21 tháng 11 2021 lúc 10:45

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHC và AKC, ta có:

∠∠(AHC) = ∠∠(AKC) = 900900

AH = AK (gt)

AC cạnh huyền chung

Suy ra: Δ∆AHC = Δ∆AKC (cạnh huyền- cạnh góc vuông)

⇒ ∠∠(ACH) = ∠∠(ACK) hay ∠∠(ACB) = ∠∠(ACD)

⇒ CA là tia phân giác ∠∠(BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Phùng Jang Mi
Xem chi tiết
Nguyễn Thùy Linh 195d
12 tháng 11 2017 lúc 20:06

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

NTN vlogs
31 tháng 12 2018 lúc 7:14

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 15:40

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHB và AKD, ta có:

∠ (AHB) = ∠ (AKD) = 90 0

AB = AD (gt)

∠ B =  ∠ D (tính chất hình thoi)

Suy ra: ∆ AHB =  ∆ AKD (cạnh huyền, góc nhọn)

⇒ AH = AK

kiều văn sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 23:44

Xét ΔAHD vuông tại H và ΔAKB vuông tại K có

AH=AK

góc HAD=góc KAB

=>ΔAHD=ΔAKB

=>AD=AB

=>ABCD là hình thoi

Lê Hải Băng
Xem chi tiết
Trần Duy Anh
Xem chi tiết
Đỗ Minh Trung
Xem chi tiết