Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB=AC=a và cạnh B A C ⏜ = 120 0 , cạnh bên BB'=a, gọi I là trung điểm của CC’. Côsin góc tạo bởi mặt phẳng (ABC) và (AB’I) bằng:
A. 20 10
B. 3
C. 30 10
D. 30 10
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, Biết AC = a 2 và AB = a 37 . Tính thể tích V của khối lăng trụ ABC.A’B’C’
A. V = 6 a 3
B. V = a 3
C. V = 3 a 3
D. V = 9 a 3
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuống cân tại A, Biết A C = a 2 và A B = a 37 Tính thể tích V của khối lăng trụ ABC.A’B’C’
A. V = 6 a 3
B. V = a 3
C. V = 3 a 3
D. V = 9 a 3
Đáp án A
A C = a 2 ⇒ A B = B C = a ⇒ B B ' = 37 a 2 − a 2 = 6 a V = 6 a . 1 2 . a . a = 3 a 3
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a và góc BAC = 1200, cạnh bên BB’ = a, gọi I là trung điểm của CC’. Côsin góc tạo bởi mặt phẳng (ABC) và (AB’I) bằng:
A. 20 10
B. 30
C. 30 10
D. 30 5
Đáp án C
Phương pháp: Phương pháp tọa độ hóa.
Cách giải:
Cách 1:
Gọi O là trung điểm của BC.
Tam giác ABC là tam giác cân, AB = AC = a, B A C ^ = 120 0
Ta gắn hệ trục tọa độ như hình bên:
Trong đó, O(0;0;0); A(0; a 2 ;0); B' ( a 3 2 ;0;a); I( - a 3 2 ;0; a 2 )
Mặt phẳng (ABC) trùng với mặt phẳng (Oxy) và có VTPT là n 1 → = ( 0 ; 0 ; 1 )
I B ' → = a 3 ; 0 ; a 2 ; I A → = a 3 2 ; a 2 ; - a 2
Mặt phẳng (IB’A) có 1 VTPT n 2 → = 2 3 ; 0 ; 1 ; 3 ; 1 ; - 1 = 1 ; 3 3 ; 2 3
Côsin góc giữa hai mặt phẳng (ABC) và (IB’A) :
cos((ABC);(AB'I)) = |cos( n 1 → ; n 2 → )| =
Cách 2:
Trong (ACC’A’) kéo dài AI cắt AC’tại D.
Trong (A’B’C’) kẻ A’H ⊥ B’D ta có:
=>
Ta dễ dàng chứng minh được C’ là trung điểm của AD’
=>
Xét tam giác A’B’D có
B'D =
=>
Xét tam giác vuông AA'H có :
=>
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, AB = a, góc giữa đường thẳng A’C và mặt phẳng (ABC) bằng 30 ° . Thể tích của khối lăng trụ ABC.A’B’C’ bằng:
A. a 3 6 18
B. 2 a 3 6 3
C. a 3 6 2
D. a 3 6 6
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A với BC = a và mặt bên AA’B’B là hình vuông. Thể tích khối lăng trụ ABC.A’B’C’ bằng
A. 2 8 a 3
B. 2 4 a 3
C. 1 4 a 3
D. 1 12 a 3
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại B, A B = a , A ' B = a 3 . Thể tích khối lăng trụ ABC.A’B’C’ bằng:
A. a 3 3 2
B. a 3 6
C. a 3 2
D. a 3 2 2
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB=AC=a, ∠ B A C = 120 ° , mặt phẳng (A’BC’) tạo với đáy một góc 60 ° . Tính thể tích của khối lăng trụ đã cho bằng:
A. 3 3 a 3 8
B. 9 a 3 8
C. a 3 3 8
D. 3 a 3 8
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với A B = A C = a , B A C ^ = 120 0 , mặt phẳng (A'BC') tạo với đáy một góc 60 0 . Tính thể tích của khối lăng trụ đã cho bằng:
A. 3 3 a 3 8
B. 9 a 3 8
C. a 3 3 8
D. 3 a 3 8
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân ABC với A B = A C = a ; B A C ^ = 120 ∘ Mặt phẳng (AB’C’) tạo với đáy góc 30 độ Tính thể tích V của khối lăng trụ đã cho.
A. V = a 3 6
B. V = a 3 8
C. V = 3 a 3 8
D. V = 9 a 3 8