Cho hình hộp chữ nhật ABCD.A'B'C'D' có AD= 2 a . Tính theo a thể tích V của khối hộp ABCD.A'B'C'D'
Cho hình hộp chữ nhật ABCD.A'B'C'D' có A D = 2 a , A C ' = 2 3 a . Tính theo a thể tích V của khối hộp ABCD.A'B'C'D'
A. V = 2 6 a 3
B. V = 2 6 a 3 3
C. V = 3 2 a 3
D. V = 6 a 3
Đáp án C
Ta có: A A ' = 2 3 a 2 − a 2 − 2 a 2 = 3 a
Thể tích khối hộp là: V = A A ' . S A B C D = 3 a . a 2 a = 3 2 a 3
Cho hình hộp chữ nhật A B C D . A ' B ' C ' D ' có A B = a , A D = 2 a , A C ' = 2 3 a . Tính theo a thể tích V của khối hộp ABCD.A’B’C’D’.
A. V = 2 6 a 3
B. V = 2 6 3 a 3
C. V = 3 2 a 3
D. V = 6 a 3
Đáp án C
Phương pháp:
Thể tích khối hộp chữ nhật: V = abc
Cách giải:
= 3 a
= 3a
Cho hình hộp chữ nhật A B C D . A ' B ' C ' D ' có A B = a , A D = a 2 , A B ' = a 5 . Tính theo a thể tích khối hộp đã cho
A. V = a 3 10
B. V = 2 a 3 2 3
C. V = a 3 2
D. V = 2 a 3 2
Đáp án D
S A B C D = a 2 Ta có B B ' = A B ' 2 − A B 2 = 2 a
⇒ V A B C D . A ' B ' C ' D ' = S A B C D . B B ' = 2 a 3 2 d v d t
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AC' = 6 a. Thể tích khối hộp chữ nhật ABCD.A'B'C'D' bằng:
A. 3 a 3 3
B. 2 a 3 3
C. 2 a 3
D. 2 3 a 3
Phương pháp:
Công thức tính thể tích khối hộp chữ nhật ABCD.A'B'C'D' là V = AA'.AB.AD
Cách giải:
Ta có: (định lý Pitago)
Xét tam giác ACC’ vuông tại C ta có:
Chọn C.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AD=2a, AA'=3a. Thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A'B'C'D' là
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AD=b, A A ' = c . Tính thể tích V của khối chóp A.A'B'C'D'.
Cho khối hộp chữ nhật A B C D . A ' B ' C ' D ' có A C = B ' D ' = a , A B ' = C D ' = b , A D ' = B ' C = c . Thể tích của khối hộp chữ nhật A B C D . A ' B ' C ' D ' là
A. 1 8 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2
B. 1 2 2 b 2 + c 2 a 2 + c 2 a 2 + b 2
C. 3 a b c
D. 1 2 2 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2
Đáp án D
Gọi độ dài các cạnh A A ' , A D , A B lần lượt là x , y , z . Ta có
y 2 + z 2 = a 2 1 z 2 + x 2 = b 2 2 x 2 + y 2 = c 2 3 ⇒ x 2 + y 2 + z 2 = 1 2 a 2 + b 2 + c 2 4
Trừ vế theo vế (4) cho (1), (2), (3) ta có
x 2 = 1 2 − a 2 + b 2 + c 2 ; y 2 = 1 2 a 2 − b 2 + c 2 ; z 2 = 1 2 a 2 + b 2 − c 2
Thể tích khối hộp chữ nhật là
1 2 2 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2
Cho khối hộp chữ nhật ABCD.A'B'C'D' có A B = a , A D = b , A C = c . Thể tích khối hộp chữ nhật ABCD.A'B'C'D' bằng bao nhiêu?
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AA'=2a Biết thể tích hình cầu ngoại tiếp tứ diện ABCD' là 9 π a 3 2 Tính thể tích V của hình hộp chữ nhật ABCD.A'B'C'D'.