Đáp án C
Phương pháp:
Thể tích khối hộp chữ nhật: V = abc
Cách giải:
= 3 a
= 3a
Đáp án C
Phương pháp:
Thể tích khối hộp chữ nhật: V = abc
Cách giải:
= 3 a
= 3a
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Hình hộp chữ nhật ABCD.A’B’C’D’ có AC = a 3 , AD' = 2a, AB' = a 5 . Tính thể tích V của hình hộp.
A. V = 2 a 3 15
B. V = a 3 15 3
C. V = a 3 6
D. V = 3 a 3
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi M và N theo thứ tự là trung điểm của A’B’ và B’C’. Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.
Cho d 1 , d 2 chéo nhau và khoảng cách d 1 , d 2 = 3 . Biết d 1 ∥ v 1 → = 2 ; - 1 ; 1 ; d 1 ∥ v 2 → = 1 ; 1 ; 2 ; A , B ∈ d 1 và C , D ∈ d 2 sao cho A B = C D = 2 . Biết tứ diện ABCD có thể tích V không phụ thuộc việc chọn các điểm A, B, C, D. Tính V.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AD=b, A A ' = c . Tính thể tích V của khối chóp A.A'B'C'D'.
Một hình hộp chữ nhật có ba kích thước là a , b , c . Thể tích V của khối hộp chữ nhật đó bằng
A. a + c b
B. a b c
C. a + b c
D. 1 3 a b c
Một hình hộp chữ nhật có kích thước a ( c m ) x b ( c m ) x c ( c m ) trong đó a, b, c là các số nguyên và 1 ≤ a ≤ b ≤ c . Gọi v ( c m 3 ) và s ( c m 2 ) lần lượt là thể tích và diện tích toàn phần của hình hộp. Biết V = s tìm số các bộ ba số ( a , b , c ) .
A. 4
B. 10
C. 12
D. 21