Cho F(x) là một nguyên hàm của f ( x ) = 2 x + 1 trên R. Biết hàm số y = F ( x ) đạt giá trị nhỏ nhất bằng 39 4 . Đồ thị của hàm số y = F ( x ) cắt trục tung tại điểm có tung độ là
A. 10
B. 11
C. 37 4
D. 39 4
Cho F(x) là một nguyên hàm của f(x) = 2x + 1 trên R. Biết hàm số y = F(x) đạt giá trị nhỏ nhất bằng 39 4 . Đồ thị của hàm số y = F(x) cắt trục tung tại điểm có tung độ là
A. 10
B. 11
C. 37 4
D. 39 4
Cho hàm số f(x) liên tục trên R. Biết x.ex là 1 nguyên hàm của f(x).e2x, tìm họ tất cả nguyên hàm của hàm số f'(x).e2x
Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)
Đạo hàm 2 vế:
\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)
\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)
Xét \(I=\int f'\left(x\right)e^{2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)
\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)
\(=\left(1-x\right)e^x+C\)
Cho F(x) là một nguyên hàm của hàm số f(x)=|1+x|-|1-x| trên tập R và thỏa mãn F(1)= 3.Tính tổng F(0)+F(2)+F(-3).
Cho hàm số f(x) liên tục trên R và F(x) là một nguyên hàm của f(x), biết ∫ 0 9 f x d x = 9 và F(0) = 9.
A. F(9) = -3
B. F(9) = -12.
C. F(9) = 12.
D. F(9) = 6.
Cho hàm số f(x) liên tục trên R và F(x) là một nguyên hàm của f(x) biết ∫ 0 9 f x d x = 9 và F(0)=9
A. F(9) = -3
B. F(9) = -12
C. F(9) = 12
D. F(9) = 6
Cho F(x) là một nguyên hàm của hàm số f(x) = |1+x| - |1-x| trên tập R và thỏa mãn F(1) = 3 Tính tổng T = F(0) + F(2) + F(-3)
A. 8.
B. 12.
C. 18.
D. 10.
Cho hàm số f(x) liên tục trên R+ và thoả mãn ∫ f ( x + 1 ) x + 1 d x = 2 ( x + 1 + 3 ) x + 5 + C . Nguyên hàm của hàm số f(2x) trên tập R+ là
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên R. Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. 3e
C. 20 e 2
D. - 1 e
Cho F(X) là một nguyên hàm f(x) trên R. Biết F (1) = 1 và \(\int_1^2\)f(x) = 5. Tính F(2)
\(\int\limits^2_1f\left(x\right)=5\Rightarrow F\left(2\right)-F\left(1\right)=5\)
\(\Rightarrow F\left(2\right)=5+F\left(1\right)=5+1=6\)