Cho hình chóp S.ABC có V S . A B C = 6 a 3 . Gọi M, N, Q lần lượt là các điểm trên các cạnh SA, SB, SC sao cho SM=MA, SN=NB, SQ=2QC. Tính V S . M N Q .
A. a 3 .
B. 2 a 3 .
C. 3 a 3 .
D. a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?

A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
![]()
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp tam giác đều S.ABC có AC = SC = 8 cm , SH = 6,93 cm ,S tam giác ABC = 27,72 cm2
a) Cho biết độ dài trung đoạn của hình chóp S.ABC.
b) Tính diện tích xung quanh và diện tích toàn phần của hình chóp S.ABC.
c) Tính thể tích của hình chóp tam giác đều S.ABC biết chiều cao của hình chóp là 7,5 cm
a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm
b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2
Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2
Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2
c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3
Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a 2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Gọi V là thể tích hình chóp S.ABC, V’ là thể tích hình chóp S.A’B’C. Tính tỉ số k = V'/V.

A. k = 1 3
B. k = 2 4
C. k = 4 9
D. k = 2 3
Đáp án C
Do CS = CB nên B’ là trung điểm của SB.
Ta có:

iowhjeb h2ndb ewdnbw2hejwgbdwdwdhewdd
Cho hình chóp S.ABC có tam giác ABC là tam giác vuông cân tại S, SB = 2a và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC
A. V = 2 a 3
B. V = 4 a 3
C. V = 6 a 3
D. V = 12 a 3
Ta chọn (SBC) làm mặt đáy => chiều cao khối chóp là d(A, (SBC)) = 3a
Tam giác SBC vuông cân tại S nên ![]()
Vậy thể tích khối chóp ![]()
Chọn A.
Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB =2a và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính thể tích V của khối chóp S.ABC
A. V = 2 a 3
B. V = 4 a 3
C. V = 6 a 3
D. V = 12 a 3
Chọn A.
Ta chọn (SBC) làm mặt đáy => chiều cao khối chóp là
![]()
Tam giác SBC vuông cân tại S nên

Vậy thể tích khối chóp

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm của BC và (SAB) hợp với đáy một góc 45°. Tính thể tích V của khối chóp S.ABC

A. V = 3 a 3 16
B. V = a 3 16
C. V = a 3 8
D. V = a 3 3 12
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm của BC và SA hợp với đáy một góc 60° Tính thể tích V của khối chóp S.ABC

A. V = a 3 3 8
B. V = a 3 3 24
C. V = a 3 5 8
D. V = a 3 3 12
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB=a, mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối chóp S.ABC




Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB=a, mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối chóp S.ABC
A. V = a 3 2 12
B. V = a 3 6
C. V = a 3 2 6
D. V = a 3 2 3
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho HC→ = 2BH→, SA hợp với đáy một góc 60°. Tính thể tích V của khối chóp S.ABC

A. V = a 3 12
B. V = a 3 7 12
C. V = a 3 4
D. V = a 3 3 8