Ta chọn (SBC) làm mặt đáy => chiều cao khối chóp là d(A, (SBC)) = 3a
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Chọn A.
Ta chọn (SBC) làm mặt đáy => chiều cao khối chóp là d(A, (SBC)) = 3a
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Chọn A.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S . A B C nhỏ nhất.
A. cos α = 2 2
B. cos α = 1 3
C. cos α = 3 3
D. cos α = 2 3
Cho hình chóp S.ABC có cạnh SA vuông góc với mặt đáy (ABC), tam giác ABC là tam giác cân tại A, AB = a, B A C ^ = 120 0 . Tính theo a khoảng cách từ A đến mặt phẳng (SBC), biết khối chóp S.ABC có thể tích bằng 3 a 3 24
A. a 2 4
B. a 6 4
C. 3 a 2 10
D. a 2
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, AB=a, mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối chóp S.ABC
A. V = a 3 2 12
B. V = a 3 6
C. V = a 3 2 6
D. V = a 3 2 3
Cho hình chóp S.ABC có cạnh bên SA vuông góc với mặt phẳng đáy (ABC). Biết SA=a tam giác ABC là tam giác vuông cân tại A, AB=2a. Tính theo a thể tích V của khối chóp S.ABC.
A. V = a 3 2
B. V = 2 a 3
C. V = a 3 6
D. 2 a 3 3
Cho hình chóp S.ABC có cạnh bên SA vuông góc với mặt phẳng đáy (ABC). Biết SA= a, tam giác ABC là tam giác vuông cân tại A, AB = 2a. Tính theo a thể tích V của khối chóp S.ABC
A. V = a 3 2
B. V = 2 a 3
C. V = a 3 6
D. V = 2 a 3 3
Cho hình chóp S.ABC có BC = a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 0 Gọi H là hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC). Biết rằng tam giác HBC vuông cân tại H và thể tích khối chóp S.ABC bằng a 3 Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 2 3 a
B. 6 3 a .
C. 2a
D. 6a
Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AB = BC = 2 a , SAB ^ = SCB ^ = 90 o . Và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 . Tính diện tích mặt cầu ngoại tiếp S.ABC theo a.
A. 12 πa 2 x
B. 6 πa 2
C. 4 πa 2
D. 3 πa 2
Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, A B = B C = 2 a , S A B ^ = S C B ^ = 90 ° .
Và khoảng cách từ A đến mặt phẳng S B C bằng a 2 . Tính diện tích mặt cầu ngoại tiếp S.ABC theo a.
A. 6 πa 2
B. 3 πa 2
C. 4 πa 2
D. 12 πa 2
Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, A C = a 2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60 0 . Tính theo a thể tích V của khối chóp S.ABC
A. V = 3 a 3 2
B. V = 3 a 3 4
C. V = 3 a 3 6
D. V = 3 a 3 12