Một hình chữ nhật ABCD có AB = a và B A C ^ = α với 0 ∘ < α < 90 ∘ . Cho hình chữ nhật đó quay quanh cạnh AB, tam giác ABC tạo thành một hình nón có diện tích xung quanh là S. Mệnh đề nào là sai?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, AD=2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tan α . Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là:
Cho hình chóp S. ABCD có đáy là ABCD là hình chữ nhật có AB = a, BC= 2a. Hai mp (SAB)và mp (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SC hợp với mặt đáy một góc α . Tính thể tích khối chóp S. ABCD theo α
A. 2 a 3 15 3
B. 2 a 3 15
C. 2 a 3
D. 2 a 3 15 9
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng S B C .
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , BC = a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tan α = 10 5 . Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là:
A. 2 a 3 3
B. 2 a 3
C. a 3 3
D. a 3
Đáp án A
Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:
Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).
Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.
Cách giải: ABCD là hình chữ nhật
Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) = S C A ^
Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))
Kẻ AH ⊥ SD, H ∈ SD
Ta có:
Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH
Tam giác SAD vuông tại A,
#SGD Bắc Giang – năm 2017 – 2018~Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a 3 , SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
Đặt hệ trục tọa độ Oxyz như hình vẽ.
Khi đó, ta có A (0;0;0), B (a;0;0), D (0; a√3 ; 0), S (0;0;a).
Ta có , nên đường thẳng BD có vectơ chỉ phương là .
Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là
Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, SA=2a và SA ⊥ (ABCD), Gọi a là góc giữa 2 đường thẳng SC và BD. Khi đó, cos α bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC= a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Chọn đáp án C.
ABCD là hình chữ nhật nên BD = 2a, ta có AD//(SBC) nên suy ra
với AH ⊥ SB. Tam giác SAB vuông cân tại A nên H là trung điểm của SB suy ra A H = a 2 2
Vậy