Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = x 2 + m 4 - x 2 + m - 7 có điểm chung với trục hoành là [a;b] (với a;b ∈ ℝ ). Tính giá trị của S = 2a + b.
A. S = 19 3
B. S = 7
C. S = 5
D. S = 23 3
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
A. 3
B. 10
C. 6
D. 5
Đáp án C
Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2
Cho hàm số y = x 3 - 3 x 2 + m , với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là
Tập hợp tất cả các giá trị của tham số m để đường thẳng y = − 2 x + m tiếp xúc với đồ thị hàm số y = x + 1 x − 1 là
A. m ∈ 7 ; − 1 .
B. m = 6.
C. m ∈ 6 ; − 1 .
D. m = − 1.
Tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = − 2 x + m cắt đồ thị của hàm số y = x + 1 x − 2 tại hai điểm phân biệt là:
A. 5 − 2 3 ; 5 + 2 3
B. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
C. − ∞ ; 5 − 2 3 ∪ 5 + 2 3 ; + ∞
D. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số y = f x - 2018 + m có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
A. 9
B. 7
C. 12
D. 18
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
tập hợp tất cả các giá trị của tham số m để qua điểm M(2;m) kẻ được ba tiếp tuyến đến đồ thị hàm số y = x 3 - 3 x 2 là
A.(-5;-4)
B. (-2;3)
C. (-5;4)
D. (4;5)
Tập hợp tất cả các giá trị của tham số m để qua điểm M(2;m) kẻ được ba tiếp tuyến đến đồ thị hàm số y = x 3 - 3 x 2 là
A.(-5;-4)
B. (-2;3)
C. (-5;4)
D. (4;5)
Tìm tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = 1 + x + 1 x 2 − m x − 3 m có đúng hai tiệm cận đứng ?
A. − ∞ ; − 12 ∪ 0 ; + ∞
B. 0 ; + ∞
C. 1 4 ; 1 2
D. 0 ; 1 2
Đáp án D
Đồ thị hàm số có 2 tiềm cận đứng
⇔ x ≥ − 1 x 2 − m x − 3 m = 0 có 2 nghiệm phân biệt.
⇔ x ≥ − 1 x 2 = m x + 3 ⇔ x ≥ − 1 m = x 2 x + 3 → f x = x 2 x + 3 có 2 nghiệm phân biệt
Xét hàm số f x = x 2 x + 3 trên − 1 ; + ∞ , có: f ' x = x x + 6 x + 3 2 ; f ' x = 0 ⇔ x = 0
Tính cách giác trị f − 1 = 1 2 ; f 0 = 0 và lim x → + ∞ f x = + ∞
Khi đó, yêu cầu * ⇔ m ∈ 0 ; 1 2 . Vậy m ∈ 0 ; 1 2 là giá trị cần tìm
Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 + x + 1 x 2 - m x - 3 m có đúng hai tiệm cận đứng là