Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d: y=-x+m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng
A. -6
B. 0
C. 9
D. -27
Tập hợp tất cả các giá trị của tham số m để đường thẳng y = m x + 1 cắt đồ thị hàm số y = x - 3 x + 1 tạo hai điểm phân biệt là
A. ( - ∞ ; 0 ] ∪ [ 16 ; + ∞ )
B. ( - ∞ ; 0 ) ∪ ( 16 ; + ∞ )
C. ( 16 ; + ∞ )
D. - ∞ ; 0
Cho hàm số y = x − 2 x − 1 có đồ thị (C) . Gọi giao điểm của đồ thị (C) với đường thẳng d : y = − x + m là A, B. Tìm tất cả giá trị của tham số m để OAB là một tam giác thỏa mãn 1 O A + 1 O B = 1
A. m = 0 m = 2 .
B. m = 2.
C. m = 0 m = 3 .
D. m = 3.
Tìm tất cả các giá trị của tham số m để đường thẳng y = ( m - 1 ) x cắt đồ thị hàm số y = x 3 - 3 x 2 + m + 1 tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. m ∈ ( - ∞ ; 0 ] ∪ [ 4 ; + ∞ )
B. m ∈ ( - 5 4 ; + ∞ )
C. m ∈ ( - 2 ; + ∞ )
D. m ∈ ℝ
Cho hàm số y = x 3 - 3 x 2 + ( m + 1 ) x + 1 có đồ thị ( C m ) với m là tham số. Tìm tất cả các giá trị của tham số m để đường thẳng d : y = x + 1 cắt đồ ( C m ) thị tại ba điểm phân biệt P(0;1) sao cho tam giác OMN vuông tại O (O là gốc tọa độ)
A. m = -2
B. m = -6
C. m = -3
D. m = - 7 2
Tìm tập hợp tất cả các giá trị của tham số m để đường thẳng y=x+1 cắt đồ thị hàm số y = 2 x + m x - 1 tại hai điểm phân biệt có hoành độ dương
A. -2 < m < -1
B. m < -1
C. m < 1
D. -2 < m < 1
Tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x + 2 x - 1 tại hai điểm
A. - 2 ; 3
B. R
C. - 2 ; + ∞
D. - ∞ ; 3
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng d : y = k ( x + 1 ) + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M (-1;2), tính tích tất cả các phần tử của tập S
A. 1 9
B. - 2 9
C. 1 3
D. -1