Cho góc α cho thỏa 0 < α < π 4 và sin α + cos α = 5 2 Tính P = sin α -cos α .
Cho góc α thỏa mãn và sinα + cosα > 0. Tính P = sin3 α + cos3 α.
Chọn A.
Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)
Ta có (sin α + cos α) 2 = sin2α + cos2α + 2sinα.cosα = 1 + 24/25 = 49/25.
Vì sin α + cosα > 0 nên ta chọn sinα + cosα = 7/5.
Thay vào P ta được
Cho góc α thỏa mãn 0 < α < π 4 và sin α + cos α = 5 2 . Tính P = sinα - cosα
A. P = 3 2
B. P = 1
C. P = -1/2
D. P = - 3 2
Chọn D.
Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α + cos2α) = 2.
Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.
Do suy ra sinα < cosα nên sinα - cosα < 0.
Vậy
Cho góc α thỏa mãn 5 sin 2 α - 6 cos α = 0 và 0 < α < π 2 .
Tính giá trị của biểu thức: A = cos ( π 2 - α ) + sin ( 2015 π - α ) - c o t ( 2016 π + α ) .
A. - 2 15
B. 4 15
C. 1 15
D. - 3 5
Cho góc α thỏa mãn 0 < α < π 4 v à sin α + cos α = 5 2 . Giá trị của biểu thức P = sin α - cosα là:
A. P = 3 2
B. P = 1 2
C. P = - 1 2
D. P = - 3 2
Chọn D.
Xét biểu thức (sin α - cosα ) 2 + (sin α + cosα ) 2 ta có:
(sin α - cosα ) 2 + (sin α + cosα ) 2
= sin 2 α - 2sin α.cosα + cos 2 α + sin 2 α + 2 sin α.cosα + cos 2 α
= 2( sin 2 α + cos 2 α ) =2
⇒ (sin α - cosα ) 2 = 2 - (sin α + cosα ) 2
Cho góc α thỏa mãn cos a = 3 5 v à - π 2 < a < 0 .Tính 5 + 3 tan α + 6 - 4 c o t α
A. 4
B. -2
C. -6
D. 3
Với đoạn thẳng AB và góc α ( 0 ° < α < 180 ° ) cho trước thì quỹ tích các điểm M thỏa mãn A M B ^ = α là
A. Hai cung chứa góc α dựng trên đoạn AB . Hai cung này không đối xứng nhau qua
B. Hai cung chứa góc α dựng trên đoạn AB và không lấy đoạn AB
C. Hai cung chứa góc α dựng trên đoạn AB . Hai cung này đối xứng nhau qua
D. Một cung chứa góc α dựng trên đoạn AB
Chọn đáp án C
Với đoạn thẳng AB và góc α ( 0 ° < α < 180 ° ) cho trước thì quỹ tích các điểm M thỏa mãn A M B ^ = α là hai cung chứa góc α dựng trên đoạn AB
Hai cung chứa góc α nói trên là hai cung tròn đối xứng nhau qua AB . Hai điểm A, B được coi là thuộc quỹ tích
Cho góc α thỏa mãn cos α = 3 5 và - π < α < 0 A = sin 2 α - cos 2 α . Tính giá trị biểu thức . A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
Với đoạn thẳng AB và góc α ( 0 ° < α < 180 ° ) cho trước thì quỹ tích các điểm M thỏa mãn A M B ^ = α là
A. Hai cung chứa góc α dựng trên đoạn AB . Hai cung này không đối xứng nhau qua
B. Hai cung chứa góc α dựng trên đoạn AB và không lấy đoạn AB
C. Hai cung chứa góc α dựng trên đoạn AB. Hai cung này đối xứng nhau qua AB.
D. Một cung chứa góc α dựng trên đoạn AB
Chọn đáp án C
Với đoạn thẳng AB và góc α ( 0 ° < α < 180 ° ) cho trước thì quỹ tích các điểm M thỏa mãn A M B ^ = α là hai cung chứa góc α dựng trên đoạn AB
Hai cung chứa góc α nói trên là hai cung tròn đối xứng nhau qua AB . Hai điểm A, B được coi là thuộc quỹ tích
Cho góc α thỏa mãn: cos α = 3 5 v à - π < α < 0 .Tính giá trị biểu thức: A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25