Chọn A.
Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)
Ta có (sin α + cos α) 2 = sin2α + cos2α + 2sinα.cosα = 1 + 24/25 = 49/25.
Vì sin α + cosα > 0 nên ta chọn sinα + cosα = 7/5.
Thay vào P ta được
Chọn A.
Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)
Ta có (sin α + cos α) 2 = sin2α + cos2α + 2sinα.cosα = 1 + 24/25 = 49/25.
Vì sin α + cosα > 0 nên ta chọn sinα + cosα = 7/5.
Thay vào P ta được
Cho góc α thỏa mãn 0 < α < π 4 và sin α + cos α = 5 2 . Tính P = sinα - cosα
A. P = 3 2
B. P = 1
C. P = -1/2
D. P = - 3 2
Cho góc α thỏa mãn sin α = 12 13 và π 2 < α < π .Tính cosα.
Cho góc α thỏa mãn tanα = 2 và 1800< α< 2700 . Tính P = cosα + sinα
Cho góc α thỏa mãn π 2 < α < 2 π và tan a + π 4 = 1 .Tính . P = cos α - π 6 + sin α
Cho góc α thỏa mãn π 2 < a < 2 π và c o t α + π 3 = - 3 Tính giá trị của biểu thức P = sin α + π 6 + c o s α
A. P = 3 2
B. P = 1
C. P = -1
D. P = - 3 2
Cho góc α thỏa mãn 0 < α < π 4 v à sin α + cos α = 5 2 . Giá trị của biểu thức P = sin α - cosα là:
A. P = 3 2
B. P = 1 2
C. P = - 1 2
D. P = - 3 2
Cho góc α thỏa mãn: 3cosα+ 2sinα = 2 và sinα < 0. Tính sinα
Cho góc α thỏa mãn cos α = - 12 13 và π 2 < α < π .Tính tanα.
Cho góc α thỏa mãn cos α = - 5 3 v à π < α < 3 π 2 . Tính tanα.
A. tan α = - 3 5
B. tan α = 2 5
C. tan α = - 4 5
D. tan α = - 2 5