Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh nguyen
Xem chi tiết
Nguyễn Hà
Xem chi tiết
Hải Lý
3 tháng 12 2017 lúc 18:55

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

vutrion
28 tháng 10 2018 lúc 16:56

Chép hả Lý

Nguyễn Hồng Pha
Xem chi tiết
lương thị hằng
31 tháng 8 2017 lúc 14:34

Đặt A = \(n^6+n^4-2n^2=n^2\left(n^4++n^2-2\right)\)

=\(n^2\left(n^4-1+n^2-1\right)\)

=\(n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)

=\(n^2\left(n^2-1\right)\left(n^2+2\right)\)

+ Nếu n chẳn ta có n = 2k (k thuộc N)

A=\(4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)\)

Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)

A=\(\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)

=\(4k\left(k+1\right)\left(2k+1\right)^2\left(4k^2+4k+3\right)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).

Suy ra:\(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.

Akai Haruma
31 tháng 8 2017 lúc 14:47

Lời giải:

Đặt \(A=n^6+n^4-2n^2\)

\(\Leftrightarrow A=n^2(n^2-1)(n^2+2)\)

Ta chứng minh \(A\vdots 9\)

\(\bullet\) Nếu \(n\equiv 0\pmod 3\Leftrightarrow n\vdots 3\Rightarrow n^2\vdots 9\Rightarrow A\vdots 9\)

\(\bullet\) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\)

Do đó, \(\left\{\begin{matrix} n^2-1\equiv 0\pmod 3\\ n^2+2\equiv 0\pmod 3\end{matrix}\right.\Rightarrow (n^2-1)(n^2+1)\vdots 9\Rightarrow A\vdots 9\)

Từ hai TH trên suy ra \(A\vdots 9(1)\)

Ta chứng minh \(A\vdots 8\)

Viết lại: \(A=n^2(n-1)(n+1)(n^2+2)\)

\(\bullet n=4k\Rightarrow n\vdots 4\rightarrow n^2\vdots 8\Rightarrow A\vdots 8\)

\(\bullet n=4k+1\Rightarrow n-1=4k\vdots 4\)\(n+1=4k+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+2\Rightarrow n\vdots 2\rightarrow n^2\vdots 4\)\(n^2+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+3\Rightarrow n-1=4k+2\vdots 2\)\(n+1=4k+4\vdots 4\Rightarrow A\vdots 8\)

Từ các TH trên suy ra \(A\vdots 8(2)\)

Từ \((1),(2)\) mà $8,9$ nguyên tố cùng nhau nên \(A\vdots 72\) (đpcm)

Lê Công Thành
Xem chi tiết
Đinh Tuấn Việt
5 tháng 6 2015 lúc 11:05

n6 + n4 - 2n= n2 . (n3 + n2 + 2) chia hết cho 72...

Hì Hì

ngôi sao tình yêu
Xem chi tiết
Khánh Vy
16 tháng 10 2018 lúc 12:57

Ta có n6 + n4 – 2n2

= n2 ( n4 +n2 – 2)

=n2 (n4 -1 + n2 -1 )

= n2 [ (n2 -1)(n2 +1) +(n2 -1)]

= n2 (n-1)(n+1)(n2 +2)

+Xét các trường hợp n= 2k, n=2k+1

n6 + n4 – 2n2  ⋮  8

+Xét các trường hợp n = 3a, n=3a ± 1

n6 + n4 – 2n2 ⋮ 9

vậy n6 + n4 – 2n2 ⋮ 72 với mọi số nguyên n

Trần Tiến thành
Xem chi tiết
Trần Tiến thành
Xem chi tiết
Hải Lý
3 tháng 12 2017 lúc 18:56

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

Hoàng Việt Bách
Xem chi tiết
ngô thị hòa
Xem chi tiết
Lê Minh Vũ
2 tháng 8 2017 lúc 10:23

Bài 1:

Vì 444\(⋮\)8.Nên:44...4(n chữ số 4)\(⋮\)8