Cho P : 2 x - y - z + 4 = 0 và A(2;0;1), B(0;-2;3). Gọi M là điểm có tọa độ nguyên thuộc mặt phẳng (P) sao cho MA=MB=3. Tìm tọa độ của điểm M
A. 6 7 ; - 4 7 ; 12 7
B. (0;-1;5)
C. (0;1;-3)
D. (0;1;3)
cho x+y+z=0 và x^2+y^2+z^2=a^2. tính gtbt x^4+y^4+z^4
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1
Cho các số thực a, b, c khác 0 thảo mãn: a + b + c, a^2 + b^2 + c^2 = 4 và x/a = y/b = z/c. Chứng minh rằng x*y + y*z + z*x = 0
cho 3 số x, y, z thỏa mãn:x+y+z=0 và x2+y2+z2=a2. chứng minh x4+y4+z4=a4/2
Cho x+y+z=0 và x^2+y^2+z^2=9. Tính P=x^4+y^4+z^4
\(x+y+z=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)\(=0\)
\(\Rightarrow2xy+2yz+2xz=-9\)
\(\Rightarrow xy+yz+xz=-\frac{9}{2}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=\left(-\frac{9}{2}\right)^2=\frac{81}{4}\)\(\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=\frac{81}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{81}{4}\)
\(\left(x^2+y^2+z^2\right)^2=9^2=81\)
\(\Rightarrow P=x^4+y^4+z^4=81-2\left(x^2y^2+y^2z^2+x^2z^2\right)=81-2.\frac{81}{4}=\frac{81}{2}\)
Cho a,b,c và x,y,z khác 0 và a+b+c=0 ; x+y+z=0 ,x/a + y/b + z/c =0. CMR : a^2 . x + b^2 . y + c^2 . z
Cho x+y+z=0 và x^2+y^2+z^2=1 tính M = 2( x^4 + y^4 +z^4)
Bạn tham khảo nhé!
http://olm.vn/hoi-dap/question/479780.html
Lời giải cho bài của bạn ở đây nhé! http://olm.vn/hoi-dap/question/479780.html
Bài 1: Cho x,y,z khác 0 và x+y+z=0
Tính giá trị của biểu thức
1/y2 + z2 - x2 + 1/x2 + y2 - z2 + 1/x2+z2 - y2
Bài 2: Cho x,y,z khác 0 và 1/x - 1/y - 1/z =1 và x=y+z
CMR 1/x + 1/y +1/z =1
Bài 3: Cho a,b,c khác 0 và x2+y2+z2/a2+b2+c2 = x2/a2 + y2/b2 +z2/c2
CMR: x=y=z=0
Bài 4: Cho các số a,b,c thỏa mãn:
a+b+c=1
a2 + b2 +c2=1 và x/a=y/b=z/c
CMR: xy+yz+xz=0
Cho x;y;z thỏa mãn \(x+y+z=0\) và \(x^2+y^2+z^2=a^2\)
Tính \(x^4+y^4+z^4\)theo a
\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)
\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)
\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)
\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)
\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)
\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)
Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)