tinh: ( 1/52+ 1/51+ 1/53 + ...+ 1/100) : ( 1/1.2 + 1/3.4 + 1/5.6 + .... + 1/99.100 )
tinh: ( 1/52+ 1/51+ 1/53 + ...+ 1/100) : ( 1/1.2 + 1/3.4 + 1/5.6 + .... + 1/99.100 )
Xét mẫu số: 1/(2x3) + 1/(3x4) + …… + 1/(99x100)
= 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100
= (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)
= (1 + 1/3 + ............ + 1/99)+(1/2+1/4+1/6+….+1/100) – (1/2+1/4+1/6+ .......... + 1/100)x2
= (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2 + 1/3 + ....... +1/50 )
= 1/51 + 1/52 + 1/53 + ............. + 1/100 (Đơn giản số trừ)
Vậy: (1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/1x2 + 1/3x4 + .......... + 1/99x100) =
(1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/51 + 1/52 + 1/53 + ............. + 1/100) = 1
thế mày biết làm thì làm hộ tao cái, đéo cóp bài đứa trên
CHỨNG MINH:1/1.2+1/3.4+1/5.6+1/7.8+.......+1/99.100=1/51+1/52+1/53+......+1/100
\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)
Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)
\(\Rightarrow\) \(ĐPCM\)
Cho A = 1/51 + 1/52+ 1/53 +...+ 1/100
B = 1/1.2 + 1/3.4 +1/5.6+...+ 1/99.100
A/ B = ?
xét B ta có:
B=1/1.2+1/3.4+1/5.6+...+1/99.100
B=1-1/2+1/3-1/4+1/5-1/6+...+1/99-100
B=(1+1/3+1/5+...+1/99)-(1/2+1/4+...+1/100)
B=(1+1/3+1/5+...+1/99)+(1/2+1/4+1/6+...+1/100)-2(1/2+1/4+1/6+...+1/100)
B=(1+1/2+1/3+...+1/99+1/100)-(1+1/2+1/3+1/4+...+1/50)
=>B=1/51+1/52+1/53+...+1/100
=>A/B=1/51+1/52+...+1/100:1/51+1/52+...+1/100=1 (đpcm)
Đó là cách nhanh nhất để giải nếu bn ko hỉu thì mik sẽ giải chi tiết cho
chúc bn học tốt ^-^
tính B:C biết
B=1/51+1/52+1/53+...+1/100
C= 1/1.2+1/3.4+1/5.6+...+1/99.100
chúng minh 1/1.2+1/3.4+1/5.6+....+1/99.100=5.1+1/51+1/52+1/53+...1/100
Ai nhanh tik 10 tik cho
Tính B:C, biết: B=1/51+1/52+1/53+............+1/100
C= 1/1.2+1/3.4+1/5.6+..............+1/99.100
\(C=\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}....+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\Rightarrow C:D=1\)
tinh
\(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\right)\) : \(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.....+\frac{1}{99.100}\right)\)
Tính E=\(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}}\)
đặt A = 1/1*2 + 1/3*4 + 1/5*6 + ... + 1/99*100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100
= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50
= 1/51 + 1/52 + 1/53 + ... + 1/100
thay vào ra E = 1
Biến đổi mẫu ta được:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)
Đặt \(P=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Vậy E = 1
A=1/1.2+1/3.4+1/5.6+...+1/99.100 = ? B=2015/51+2015/52+2015/53+...+2015/100
Chứng minh rằng B/A là 1 số nguyên