Gọi A, B là các điểm biểu diễn của các số phức z 1 = - 1 + 2 i , z 2 = 2 + 3 i . Khi đó, độ dài đoạn thẳng AB là
A. 26
B. 5 + 13
C. 10
D. 10
Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i , điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
A. 1-2i
B. 2-4i
C. 2+4i
D. 1+2i
Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
A. 1-2i
B. 2-4i
C. 2+4i
D. 1+2i
Đáp án D
Số phức biểu diễn điểm M có dạng a+bi
Có (Do M là trung điểm của AB)
Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức z và 1 + i z . Tính |z| biết diện tích tam giác OAB bằng 8.
A. |z| = 4
B. | z | = 4 2
C. |z| = 2
D. | z | = 2 2
Gọi M là điểm biểu diễn của số phức z trong mặt phẳng tọa độ, N là điểm đối xứng của M qua Oy (M,N không thuộc các trục tọa độ). Số phức w có điểm biểu diễn lên mặt phẳng tọa độ là N. Mệnh đề nào sau đây đúng ?
A. w = -z.
B. w = - z -
C. w = z -
D. w > z
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 + i| ≤ 2 là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Hình tròn tâm I(1; 1) bán kính R = 2
C. Đường tròn tâm I(-1; -1) bán kính R = 2
D. Hình tròn tâm I(-1; -1) bán kính R = 2
Tập hợp các điểm biểu diễn số phức z thòa mãn |z| = |1 + i| là
A. Hai điểm
B. Hai đường thẳng
C. Đường tròn bán kính R=2
D. Đường tròn bán kính R = 2
Ta có | 1 + i | = ( 1 + 1 ) = 2 . Gọi M là điểm biểu diễn của z ta có |z| = OM.
Do đó: | z | = | 1 + i | ⇔ O M = 2 R = 2 .
Vậy tập hợp các điểm M biểu diễn số phức z là đường tròn tâm O, bán kính
Chọn đáp án D.
Tập hợp các điểm biểu diễn số phức z thỏa mãn |i(z - 1) + 2| = |3 - 4i| là
A. Đường tròn tâm I(1; 2) bán kính R = 5
B. Đường tròn tâm I(1; -2) bán kính R = 5
C. Đường tròn tâm I(-1; 2) bán kính R = 5
D. Đường tròn tâm I(-1; -2) bán kính R = 5
Đặt z = a + bi (a, b ∈ R). Ta có:
Tập hợp các điểm M(a,b) biểu diễn của số phức z là đường tròn tâm I(1;2), bán kính là R=5
Chọn A
Tập hợp các điểm biểu diễn số phức z thỏa mãn | z + i | = | 1 + 3 i | là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Đường tròn tâm I(0; 1) bán kính R = 4
C. Đường tròn tâm I(0; 1) bán kính R = 2
D. Đường tròn tâm I(0; -1) bán kính R = 2
Ta có: | 1 + 3 i | = ( 1 + 3 ) = 2 . Đặt z = a + bi(a, b ∈R). Ta có:
| z + i | = | 1 + 3 i | <=> |a + (1 - b)i| = 2 <=> a 2 + ( 1 - b ) 2 = 4
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(0 ;1), bán kính R = 2
Chọn C
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là
A. Đường tròn tâm I(1; -2) bán kính R = 2
B. Đường tròn tâm I(1; -2) bán kính R = 4
C. Đường tròn tâm I(-1; 2) bán kính R = 2
D. Đường tròn tâm I(-1; 2) bán kính R = 4