Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
A. 1-2i
B. 2-4i
C. 2+4i
D. 1+2i
Cho phương trình \(z^2+bc+c=0\) có hai nghiệm z1 z2 thỏa mãn z2 - z1 = 4+2i . Gọi A,B là các điểm biểu diễn các nghiệm của phương trình \(z^2-2bz+4c=0\) . Tính độ dài đoạn AB
A: \(8\sqrt{5}\)
B: \(2\sqrt{5}\)
C: \(4\sqrt{5}\)
D: \(\sqrt{5}\)
Tập hợp các điểm biểu diễn số phức z thỏa mãn z ' = ( z + i ) ( z + i ) là một số thực và là đường thẳng có phương trình
A. x = 0
B. y = 0
C. x = y
D. x = -y
Tập hợp các điểm biểu diễn số phức z thỏa mãn |i(z - 1) + 2| = |3 - 4i| là
A. Đường tròn tâm I(1; 2) bán kính R = 5
B. Đường tròn tâm I(1; -2) bán kính R = 5
C. Đường tròn tâm I(-1; 2) bán kính R = 5
D. Đường tròn tâm I(-1; -2) bán kính R = 5
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 + i| ≤ 2 là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Hình tròn tâm I(1; 1) bán kính R = 2
C. Đường tròn tâm I(-1; -1) bán kính R = 2
D. Hình tròn tâm I(-1; -1) bán kính R = 2
Tập hợp các điểm biểu diễn số phức z thỏa mãn 2 z - 1 = z + z + 2 trên mặt phẳng tọa độ là một
A. đường thẳng
B. parabol
C. đường tròn
D. hypebol
Tập hợp các điểm biểu diễn số phức z thòa mãn |z| = |1 + i| là
A. Hai điểm
B. Hai đường thẳng
C. Đường tròn bán kính R=2
D. Đường tròn bán kính R = 2
Tập hợp các điểm biểu diễn số phức z thỏa mãn | z + i | = | 1 + 3 i | là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Đường tròn tâm I(0; 1) bán kính R = 4
C. Đường tròn tâm I(0; 1) bán kính R = 2
D. Đường tròn tâm I(0; -1) bán kính R = 2
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 - 2i| = 2 là
A. Đường tròn tâm I(1; -2) bán kính R = 2
B. Đường tròn tâm I(1; -2) bán kính R = 4
C. Đường tròn tâm I(-1; 2) bán kính R = 2
D. Đường tròn tâm I(-1; 2) bán kính R = 4