Cho số phức z thỏa mãn 5 ( z + i ) z + 1 = 2 - i . Khi đó môđun của số phức w = 1 + z + z 2 là
A. 5
B. 13
C. 13
D. 5
Cho số phức z thỏa mãn (3 + 2i)z + (2 - i)2 = 4 + i. Môđun của số phức w = ( z + 1 ) z là
A. 2
B. 4
C. 10
D. 10
Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức: w = z - 2 z + 1 z 2 là
A. 2
B. 4
C. 10
D. 10
Đặt z = a + bi(a, b ∈ R). Ta có :
(1 + i)(z - i) = (1 + i)[a + (b - 1)i] = a - b + 1 + (a + b - 1)i
Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i
⇔ a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i ⇔ (3a - b + 1) + (a + 3b - 1)i = 2i
Suy ra z = 1 và
Chọn C
Cho số phức z thỏa mãn z - 2 - 4 i = 5 và z m i n . Khi đó số phức z là
A. z = 3+2i
B. z = 2 -i
C. z = 1 +2i
D. z = 4 +5i
Cho số phức z thỏa mãn ( 2 + i ) z + 2 ( 1 + 2 i ) 1 + i . Môđun của số phức w = z + i + 1 là
A. 3
B. 4
C. 5
D. 6
Cho số phức z thỏa mãn | z + 1 - i | = | z | . Giá trị nhỏ nhất của môđun của z là
A. 0
B. 1 2
C. 1
D. 1 2
Chọn D
Từ đó suy ra môđun của z nhỏ nhất bằng 1 2
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12+2i
B. -2+12i
C. 6-4i
D. 12+4i
Đáp án A.
Do nên tập hợp điểm M là các điểm nằm ngoài đường tròn và nằm trong đường tròn
Dựa vào hình vẽ ta chứng minh được
Khi đó
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 ; z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12 + 2 i
B. - 2 + 12 i
C. 6 - 4 i
D. 12 + 4 i
Số phức z thỏa mãn z = ( 1 + 2 i ) 3 2 - i là
A. z = 4 - 3i
B. z = 4 + 3i
C. z = -4 - 3i
D. z = -4 + 3i
Số phức z thỏa mãn z(1 + 2i) + 1 - i = 2i là
A. -1+i
B. 1-i
C. 1+i
D. -1-i
Ta có:z(1 + 2i) + 1 - i = 2i là <=> z(1 + 2i) = -1 + 3i
Do đó:
Chọn đáp án C.