Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cảnh Tùng
Xem chi tiết
Libra
Xem chi tiết
Jennie Kim
1 tháng 8 2019 lúc 12:20

\(a,n+6⋮n\)

\(\Rightarrow6⋮n\)

\(\Rightarrow n\inƯ\left(6\right)\)

\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(b,n+9⋮n+1\)

\(\Rightarrow n+1+8⋮n+1\)

\(\Rightarrow8⋮n+1\)

\(\Rightarrow n+1\inƯ\left(8\right)\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)

\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)

\(c,n-5⋮n+1\)

\(\Rightarrow n+1-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\inƯ\left(6\right)\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)

\(d,2n+7⋮n-2\)

\(\Rightarrow2n-4+11⋮n-2\)

\(\Rightarrow2\left(n-2\right)+11⋮n-2\)

\(\Rightarrow11⋮n-2\)

\(\Rightarrow n-2\inƯ\left(11\right)\)

\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)

Trương Mỹ Hoa
Xem chi tiết
N H H T
25 tháng 8 2017 lúc 20:44

a25/27 15/16

OoO_Nhok_Lạnh_Lùng_OoO
25 tháng 8 2017 lúc 20:46

1)      a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

2)      x– 1     

Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm: 

           x5  – 1   = x5 – x + x – 1

                        = (x5 – x) + (x – 1)

                        = x(x4 – 1) + ( x – 1)

                       = x(x2 – 1)(x2 + 1) + (x - 1)

                       = x(x +1)(x – 1)(x2 + 1) + (  x – 1)

                       = (x – 1)[x(x + 1)(x2 + 1) + 1].

3)      4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

phuc nguyen
Xem chi tiết
phuc nguyen
26 tháng 7 2020 lúc 9:56

Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}

Khách vãng lai đã xóa
God Hell
Xem chi tiết
TFBoys
10 tháng 8 2017 lúc 21:11

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

TFBoys
10 tháng 8 2017 lúc 21:33

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)

Nguyễn Thị Minh Khuê
Xem chi tiết
Nguyễn Anh Hào
Xem chi tiết
Nguyễn Anh Hào
18 tháng 1 2016 lúc 18:19

Chú ý:\(\vdots\)là chia hết

Jungkook Oppa
18 tháng 1 2016 lúc 18:20

Đề bài nó cứ thế nào ý !!

Trương Mỹ Hoa
Xem chi tiết
Nguyễn Tiến Dũng
3 tháng 9 2017 lúc 9:31

f/=>n thuộc ƯC(48,92,136) và n nhỏ nhất

48=24.3

92=22.23

136=23.17

=>UCLN(136;48;92)=22=4

=>n thuộc Ư(4)={-4;-2;-1;1;2;4}

=>n=-4

Đỗ Thái Tuấn
Xem chi tiết