Trong không gian Oxyz, cho hình vuông ABCD có A(8; 0; 3),C(0; -4; -5) và D ( a ; b ; c ) ( a ; b ; c ∈ ℤ ) thuộc mặt phẳng (Oyz). Giá trị a + b + c bằng
A. -3
B. -2
C. 2
D. 3
Trong không gian Oxyz. Cho tứ diện đều ABCD có A(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD) là H (4; -3;-2). Tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD.
A. I(3; -2;-1).
B. I(2;-1;0).
C. I(3; -2;1).
D. I(-3; -2;1).
Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại A và B. Ba đỉnh A(1;2;1), B(2;0;1), C(6;1;0) và đỉnh D(a,b,c). Biết rằng hình thang có diện tích là 6 2 , tính a+b+c
A. a+b+c=6
B. a+b+c=8
C. a+b+c=12
D. a+b+c=7
Trong không gian Oxyz, cho tứ diện đều ABCD có A(0;1;2). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (BCD). Cho H(4;-3;-2). Tọa độ tâm I và bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD là:
A. I(2; -1; 0); R = 2 3
B. I(4; -3; -2); R = 4 3
C. I(3; -2; -1); R = 3 3
D. I(3; -2; -1); R = 9
Đáp án C
Do ABCD là tứ diện đều nên H là trọng tâm tam giác BCD và I trùng với trọng tâm G của tứ diện ABCD. Ta có:
Từ đó ta có:
Vậy đáp án C đúng.
Trong không gian Oxyz, cho hình vuông ABCD có đỉnh C ( 1;-1;-2 ) và đường chéo B D = x + 1 4 = y - 1 - 1 = z + 1 1 . Tìm tọa độ các đỉnh A, B, D biết điểm B có hoành độ dương
A. A ( 1;2;3 ), B ( -5;2;-2 ), C ( 7;-1;1 )
B. A ( 1;2;3 ), B ( -3;0;0 ), C ( 7;-1;1 )
C. A ( 1;2;3 ), B ( -5;2;-2 ), C ( -9;3;-3 )
D. A ( 1;2;3 ), B ( 3;0;0 ), C ( -1;1;-1 )
Gọi I là tâm của hình vuông thì I chính là hình chiếu của C lên BD
Ta có: I ( -1+4t;1-t;-1+t )nên C I → = 4 t - 2 ; 2 - t ; t + 1
Vì C I ⊥ B D nên
C I ⇀ . u B D → = 0 ⇔ 4 4 t - 2 - 2 - t + t + 1 = 0 ⇔ t = 1 2
Do đó: I 1 ; 1 2 ; - 1 2 , C I - 3 2 2
I là trung điểm AC ⇒ A ( 1;2;3 )
Tọa độ điểm B - 1 + 4 t ; 1 - t ; - 1 + t với t > 1 4
Ta có IB = IC nên
- 2 + 4 t 2 + 1 2 - t 2 + 1 2 + t 2 = 9 2 ⇔ t 2 - t = 0 ⇔ t = 0 t = 1
Tọa độ điểm B ( 3;0;0 ). Suy ra d ( -1;1;-1 )
Đáp án D
Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại A và B. Ba đỉnh A(1;2;1), B(2;0;-1), C(6;1;0). Hình thang có diện tích bằng 6√2. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?
A. a+b+c=6
B. a+b+c=5
C. a+b+c=8
D. a+b+c=7
Chọn A
Theo giả thiết ABCD vuông tại A và B và có diện tích bằng 6√2 nên:
Do ABCD là hình thang vuông tại A và B nên . Giả sử khi đó ta có:
Trong không gian Oxyz, cho điểm A (4;2;1). Hình chiếu vuông góc của A lên trục Ox có tọa độ là
A. (0;2;0)
B. (0;2;1)
C. (4;2;1)
D. (4;0;0)
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Trong không gian Oxyz cho điểm A(4;2;1). Hình chiếu vuông góc của A lên trục Ox có tọa độ là
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A trên trục Ox có tọa độ là
A. (0;1;0)
B. (-2;0;0)
C. (0;0;3)
D. (0;1;3)
Hình chiếu vuông góc của điểm A(-2;1;3) lên trục Ox là A(-2;0;0).
Chọn đáp án B.