Cho số phức z thỏa mãn z - 1 2 - i + i = 5 . Biết rằng tập hợp biểu diễn số phức w = (1 - i)z + 2i có dạng x + 2 2 + y 2 = k . Tìm k.
A. k = 92
B. k = 100
C. k = 50
D. k = 96
Cho số phức z thỏa mãn z - 1 - i = 1 , số phức w thỏa mãn w ¯ - 2 - 3 i = 2 . Tìm giá trị nhỏ nhất của z - w .
Cho số phức z thỏa mãn z − 1 − i = 1 , số phức w thỏa mãn w ¯ − 2 − 3 i = 2 . Tìm giá trị nhỏ nhất của z − w .
A. 17 + 3
B. 13 + 3
C. 13 - 3
D. 17 - 3
Cho số phức z thỏa mãn z - 1 - i = 1 , số phức w thỏa mãn w ¯ - 2 - 3 i = 2 . Tính giá trị nhỏ nhất của z - w .
A. 13 - 3
B. 17 - 3
C. 17 + 3
D. 13 + 3
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn z + ( 1 - 2 i ) z = 2 - 4 i . Môđun số phức z bằng bao nhiêu?
A. |z|=3
B. | z | = 5
C. | z | = 5
D. | z | = 4
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
A. 1
B. 2
C. 3
D. 4
Chọn B.
Gọi số phức cần tìm là z = a + bi.
Ta có ( 1 - 3i) z = ( 1 - 3i) ( a + bi)
= a + 3b - 3ai + bi = a + 3b + ( b - 3a) i
+ Do ( 1 - 3i) z là số thực nên b - 3a = 0 hay b = 3a
+ ta có ⇔|a – 2 + (-b + 5)i| = 1
Hay ( a - 2) 2 + ( 5 - 3a) 2 = 1
(thỏa mãn)
Vậy có hai số phức z thỏa mãn là z = 2 + 6i và z = 7/5 + 21/5i
Cho số phức z thỏa mãn z ( 2 - i ) + 13 i = 1 Tính môđun của số phức z
Cho số phức z thỏa mãn z ( 2 - i ) + 13 i = 1 .Tính môđun của số phức z
A. z = 34
B. z = 5 34 3
C. z = 34 3
D. z = 34
Đáp án D
Phương pháp giải:
Tìm số phức z bằng phép chia số phức, sau đó tính môđun hoặc bấm máy tính
Lời giải: Ta có
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z
A. | z | = 34
B. | z | = 34
C. | z | = 34 3
D. | z | = 5 34 3
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z.
A. z = 34
B. z = 34
C. z = 34 3
D. z = 5 34 3
Đáp án B
Phương pháp
Từ giả thiết ta biến đổi để tìm được công thức của z. Dùng định nghĩa để tìm z
Lời giải chi tiết.
Ta có:
Do đó