y^2-y=2 giai phuong trinh
giai phuong trinh x^2+y^2+z^2=y(x+z)
\(PT\Leftrightarrow x^2+y^2+z^2=xy+yz\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+4yz\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-4yz=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4z^2-4yz+y^2\right)+2y^2=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2=0\)
Vì \(\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2\ge0\forall x;y;z\)
Dấu "=" xảy ra khi \(x=y=z=0\)
giai phuong trinh x^2 -y^2 = 189
giai phuong trinh nghiem nguyen:x^4+x^2-y^2-y+20=0
bạn chơi roblox à
\(x^4+x^2-y^2-y+20=0\)
<=> x2(x2+1)-y(y+1)=-20
giai phuong trinh nghiem nguyen : x^2+x=y^4+y^3+y^2+y
Giai phuong trinh nghiem nguyen sau
x^2 +y^2-x-y=8
Nhân cả 2 vế của pt với 4 ta đc 4x2+4y2-4x-4y=32
Suy ra (2x-1)2+(2y-1)2=34 mà 34=52+32
Nên (2x-1),(2y-1) thuộc tập hợp (5,3),(-5,-3),(-5,3),(5,-3) giải ra ta tìm đc x,y
4( X*2 +Y*2 -x-y)= 4*8=32
4x^2-4x+1+4y^2-4y+1=34
(2x-1)^2+(2y-1)^2=34
=> pt a^2+b^2=34
=>1) l a l=3, b=l 5 l,2) l a l=5, b=l 3 l
1) 2x-1=a=(+/-)3 => x=2, x=1
2y-1=b=(+/-)5=> y=3, y=-2
tuong tu 2)y=2, y=1,x=3, x=-2
giai phuong trinh
2x^2 + 3xy + y^2 = 0
\(2x^2+3xy+y^2=0\)
\(\Rightarrow2x^2+2xy+xy+y^2=0\)
\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)
\(2x^2+3xy+y^2=0\)
\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)
\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)
Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)
Hoặc \(2x+y=0\left(2\right)\)
Thế (1) vào (2) ta có:
\(-2y+y=0\)
\(\Leftrightarrow-y=0\Leftrightarrow y=0\)
\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)
Vậy \(x=y=0\)
Ta có : \(2x^2+3xy+y^2=2x^2+2xy+xy+y^2=2x\left(x+y\right)+y\left(x+y\right)=\left(2x+y\right)\left(x+y\right)=0\)
\(=>\orbr{\begin{cases}2x+y=0\\x+y=0\end{cases}=>\orbr{\begin{cases}x=-\frac{y}{2}\\x=-y\end{cases}}}\)
Vậy x=-y hoặc x=-y/2 với mọi x thì 2x^2+3xy+y^2
Giai phuong trinh x^2+(1/x^2)+16y^2+(1/y^2)=10
\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}-10=0\)
<=>\(\left(x^2-2+\frac{1}{x^2}\right)+\left(16y^2-8+\frac{1}{y^2}\right)=0\)
<=>\(\left[x^2-2\cdot x\cdot\frac{1}{x}+\left(\frac{1}{x}\right)^2\right]+\left[\left(4y\right)^2-2\cdot4y\cdot\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]=0\)
<=>\(\left(x-\frac{1}{x}\right)^2+\left(4y-\frac{1}{y}\right)^2=0\)
Mà \(\left(x-\frac{1}{x}\right)^2;\left(4y-\frac{1}{y}\right)^2>hoac=0\)
=>\(\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(4y-\frac{1}{y}\right)^2=0\end{cases}}\)
<=>\(\hept{\begin{cases}x-\frac{1}{x}=0\\4y-\frac{1}{y}=0\end{cases}}\)
đoạn này bạn tự giải tiếp
Vậy x=1 và y=1/2
Sorry
Ở trên mình KL thiếu
Còn có x= -1;y=-1/2
/x+y/ +/y-2/=2
/x-1/+y =3
giai he phuong trinh
B1:biến đổi (2) hoặc (1)
B2:Thay vào nhau thôi. Kết quả là
\(\hept{\begin{cases}x=-\frac{4}{3}\\y=\frac{2}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Giai phuong trinh x2+ y22+z22=y(x+z)