Cho hình chóp đều S.ABCD có cạnh đáy bằng 2 a , cạnh bên bằng 3 a . Gọi M là trung điểm CD. Khoảng cách giữa hai đường thẳng AC và SM bằng
A. 2 a 3
B. 2 2 a 3
C. 2 a 3
D. a.
Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Góc giữa hai mặt phẳng (MBD) và (ABCD) bằng
A. 90 0
B. 30 0
C. 45 0
D. 60 0
Cho hình chóp S.ABCD có đáy hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN,SC) bằng
A. 45 °
B. 30 °
C. 90 °
D. 60 °
Đáp án C
MN là đường trung bình của tam giác DAS nên MN//SA.
Gọi O là tâm của hình vuông ABCD, vì SA=SC=SB=SD nên
Cho hình chóp S.ABCD có đáy hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN,SC) bằng
A. 45 o
B. 30 o
C. 90 o
D. 60 o
Đáp án C
MN là đường trung bình của tam giác DAS nên MN//SA
Gọi O là tâm của hình vuông ABCD, vì SA=SC=SB=SD nên SO ⊥ (ABCD)
Cho hình chóp tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bằng a. Gọi O là tâm của ABCD. Gọi M là trung điểm SC và M' là hình chiếu vuông góc của M lên (ABCD). Diện tích của tam giác M' BD bằng:
A. a 2 6 8
B. a 2 2
C. 2 a 2 8
D. a 2 4
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, góc giữa mặt bên và mặt đáy bằng 60 0 . Gọi M là trung điểm của cạnh SA. Khoảng cách giữa hai đường thẳng BM và SC bằng
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, góc giữa mặt bên và mặt đáy bằng 60 ° . Gọi M là trung điểm của cạnh SA. Khoảng cách giữa hai đường thẳng BM và SC bằng
A. a 15 5
B. a 3
C. a 5 2
D. a 2
Cho khối chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tâm O cạnh bên bằng a 3 . Gọi M là trung điểm của CD, H là điểm đối xứng của O qua SM (tham khảo hình vẽ bên). Thể tích khối đa diện ABCDSH bằng
A. a 3 10 12
B. a 3 10 18
C. a 3 10 24
D. 5 a 3 10 24
Chọn D
Khối đa diện ABCDSH được chia thành hai khối chóp S.ABCD và H.SCD
Vì H là điểm đối xứng của O qua SM nên
Vậy thể tích khối đa diện cần tính bằng
cho hình chóp s.abcd có đáy abcd là hình vuông cạnh a, cạnh bên đều bằng \(\dfrac{a\sqrt{6}}{2}\). gọi m, n trung điểm ad và sd. tính số đo của góc \(\left(MN,SC\right)\)?
hình vẽ chóp tứ giác đều t lấy từ mạng xuống bạn tự xác định thêm M và N vào hình rồi đọc lời giải nhé! ( T hết pin điện thoại )
Dễ thấy MN//SA ( tính chất đường trung bình ) thực chất ta đi tìm góc (MN,SC) là đi tìm góc (SA,SC)
Ta lại có \(AC=a\sqrt{2}\) ( đường chéo hình vuông ) \(\Rightarrow AO=\dfrac{a\sqrt{2}}{2}\)
vì \(SO\perp\left(ABCD\right)\Rightarrow SO\perp AO\Rightarrow\Delta SAO\perp O\)
\(\Rightarrow SO=\sqrt{SA^2-AO^2}=\sqrt{\left(\dfrac{a\sqrt{6}}{2}\right)^2-\left(\dfrac{a\sqrt{2}}{2}\right)^2}=a\)
\(\Rightarrow\cos\left(SA,SO\right)=\dfrac{SO}{SA}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{ASO}\simeq35^015^'\)
\(\Rightarrow\widehat{ASC}\simeq70^031^'\)
Câu 1: Cho hình chóp tứ giác đều S.ABCD có đáy bằng a, và cạnh bên bằng a√2.
a) Tính thể tích của hình chóp đã cho.
b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.
c) Gọi A’ và C' lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hình chóp A’.ABCD và C’.CBAD bằng nhau.
Câu 2: Trong không gian tọa độ Oxyz cho các điểm A(4; -1; 2); B(1; 2; 2), C(1; -1; 5)
a) Chứng minh rằng ABC là tam giác đều.
b) Viết Phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ.
c) Viết phương trình trục của đường tròn ngoại tiếp ΔABC
d) Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.
các bạn giúp mình với