Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cẩm Tú Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 20:07

Bài 7:

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có

DB=EC

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHDB=ΔKEC

Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{IBC}\)

và \(\widehat{KCE}=\widehat{ICB}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BIA}=\widehat{CIA}\)

hay IA là tia phân giác của góc BIC

Pham Van Hung
Xem chi tiết
Nguyễn Linh Chi
11 tháng 7 2019 lúc 7:04

G A B C N M E F

a) Gọi F' là giao điểm của AE và BC

MN//BC => \(\frac{MN}{BC}=\frac{AN}{AC}\)

NE//F'C => \(\frac{EN}{FC}=\frac{AN}{AC}\)

=> \(\frac{EN}{F'C}=\frac{MN}{BC}=\frac{2EN}{2FC}=\frac{EN}{FC}\Rightarrow F'C=FC\)

mà F', F cùn thuộc cạnh BC

=> F' trùng F

=> A, E, F thẳng hàng

b) Xét tam giác BNC có: Flaf trung điểm BC; G là trung điểm BN

=> FG là đường trung bình tam giác BNC

=> FG//=1/2 NC

=> FG=9:2=4,5 cm

Xét tam giác BNM tương tự

có: EG//=1/2 BM 

=> EG=12:2=6 cm

Ta lại có: EG//BM => EG//AB

FG //NC => FG//AC

Mà AB vuông AC

=> EG vuông FG

=> Tam giác EGF vuông tại G có: FG=4,5 cm và EG=6 cm

Áp dụng định lí pitago: 

=> \(EF^2=GE^2+GF^2=4,5^2+6^2=7,5^2\)

=> EF=7,5

\(\widehat{EGF}=90^o\)

\(\cos\widehat{GEF}=\frac{GE}{EF}=\frac{6}{7,5}=\frac{4}{5}\Rightarrow\widehat{GEF}=arcos\frac{4}{5}\)

\(\cos\widehat{GFE}=\frac{GF}{EF}=\frac{4,5}{7,5}=\frac{3}{5}\Rightarrow\widehat{GFE}=arcos\frac{3}{5}\)

c) Ta có: MN//BC 

=> \(\frac{BM}{AB}=\frac{CN}{AC}\Rightarrow\frac{AB}{AC}=\frac{BM}{CN}=\frac{2GE}{2GF}=\frac{GE}{GF}\)

Xét tam giác vuông GEF và tam giác vuông ABC 

có: \(\frac{AB}{AC}=\frac{GE}{GF}\)

=> tam giác GEF đồng dạng với tam giác ABC

NGUYỄN ANH THƯ
Xem chi tiết
Bùi Thanh Thảo
Xem chi tiết
Cô bé đáng yêu
Xem chi tiết
Nguyễn Thị Kim Ngân
Xem chi tiết
Mai Duong
Xem chi tiết
Nguyễn Linh Chi
11 tháng 7 2019 lúc 7:04

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

Nguyễn Văn Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 1:07

loading...

Gaming DemonYT
Xem chi tiết
KO tên
1 tháng 3 2021 lúc 20:07

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi