Chứng tỏ rằng: Nếu a + b c + d = b + c d + a (trong đó a + b + c + d ≠ 0 ) thì a = c .
chứng tỏ rằng nếu a/b< c/d thì a/b < a+c/b+d < c/d ?
ta co:a/b<c/d
=>ad<bc
=>ad+ab<bc+ab
=>a(b+d)<b(a+c)
=>a/b<(a+c/b+d) (1)
co ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d (2)
tu (1) va (2) =>dpcm
chứng tỏ rằng , nếu a/b = c/d thì ta có a+b / a-b = c+d / c-d ( a# b và c# d )
chứng tỏ rằng: nếu a + b/ c + d = b + c/ d + a (trong đó a + b + c + d khác 0) thì a = c
vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\) ; \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)
vì \(\frac{a}{c}=\frac{b}{d}\)mà\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c
Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì a=c
Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)
\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)
Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)
Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)
Chứng tỏ rằng: Nếu (a+b)/(c+d)=(b+c)/(b+a)(trong đó a+b+c+d khác 0)) thì a = c.
hãy chứng tỏ rằng nếu a/b < c/d(b,d>0) thì a/b < a+c/b+d < c/d
chứng tỏ rằng nếu a\b <c\d (b>0,d>0) thì a\b < a+c\b+d < c\d
chứng tỏ rằng nếu a/b<c/d (b>0/d>0) thì a/b < a+c/b+d<c/d
* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
chứng tỏ rằng nếu a/b < c/d ( b>0,d>0) thì a/b < a+c/b+d<c/d
Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)
thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
chứng tỏ rằng nếu a/b < c/d (b>0/d>0) thì a/b < a+c/b+d <c/d