Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm hồng anh
Xem chi tiết
Trần Thị Diễm Quỳnh
17 tháng 8 2015 lúc 15:23

ta co:a/b<c/d

=>ad<bc

=>ad+ab<bc+ab

=>a(b+d)<b(a+c)

=>a/b<(a+c/b+d)     (1)

co ad<bc

=>ad+cd<bc+cd

=>d(a+c)<c(b+d)

=>a+c/b+d<c/d    (2)

tu (1) va (2) =>dpcm

Tuấn Trương Quốc
Xem chi tiết
Hoàng Hà Khoa
Xem chi tiết
nguyễn khắc bảo
15 tháng 10 2021 lúc 18:38

vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)  ;    \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

vì \(\frac{a}{c}=\frac{b}{d}\)\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c

Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)  thì a=c

Khách vãng lai đã xóa
Phước Lộc
18 tháng 10 2021 lúc 11:16

Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)

\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)

Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)

Khách vãng lai đã xóa
Vũ Thế Lê Anh
Xem chi tiết
võ quỳnh hoa
Xem chi tiết
nguyen vu anh
Xem chi tiết
Phạm Thành Đạt
Xem chi tiết
Lê Nguyên Hạo
18 tháng 8 2016 lúc 15:52

* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

vunguyenminhtrang
Xem chi tiết
KWS
23 tháng 8 2018 lúc 21:48

Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)

thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đạt Phạm
Xem chi tiết