Chứng minh rằng: A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2
chứng minh rằng tổng sau lớn hơn 12:
B=1/12+1/13+1/14+....+1/22
Cho A= 3/10 + 3/11 + 3/12 + 3/13 + 3/14. Chứng minh rằng: 1 < A < 2
Chứng minh rằng:1/11+1/12+1/13+1/14+...+1/60>7/6<3
Chứng minh rằng: A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
cho B : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 . chứng minh rằng 1/3 < B < 1/2
Ta có : B = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 nên B sẽ có 5 số hạng
Và 1/3 = 10/30
Mà : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 1/30 x 10
Nên : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 10/30
=> 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 1/3
Chứng minh với 1/2 tương tự
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 +...+ 1 phần 22 > 1 phần 2
Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 + … + 1 phần 22 > 1 phần 2
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{70}\)
Chứng minh rằng:\(\frac{4}{3}< A< 35\)
Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{2}{3}\)
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{3}+\frac{4}{12}=\frac{2}{3}..\)
Cho S = 3/10 + 3/11+3/12+3/13+3/14 . Chứng minh rằng 1 nhỏ hơn S nhỏ hơn 2
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(\Rightarrow S< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}\)
\(\Rightarrow S< \dfrac{15}{10}< 2\)
Lại có \(S>\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}\)
\(\Rightarrow S>\dfrac{15}{14}>1\)
\(\Rightarrow1< S< 2\)