cho 3 số thực x,y,z thỏa mãn x+y+z = 3 và 1/x+1/y+1/z = 1/3
CMR có ít nhất 1 trong 3 số x,y,z = 3
Cho x,y,z là 3 thực thỏa : x+y+ =3 và 1/x+1/y+1/z=1/3. chứng minh rằng ít nhất 1 trong 3 số x,y,z =3
Cho 3 số thực dương x,y,z thõa mãn 1/1+x +1/1+y + 1/1+z=1
CMR Trong 3 số x,y,z có ít nhất 1 số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2
Cho 3 số thực dương x,y,z thỏa mãn :\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{z+1}=1\)
CMR Trong 3 số x,y,z có ít nhất một số ko nhỏ hơn 2 và một số ko lớn hơn 2
\(\text{Giả sử không có số nào nhỏ hơn 2}\Rightarrow\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\left(\text{vẫn đúng }\right)\)
Cho x;y; z thỏa mãn 1/x + 1/y + 1/z= 1/2015; x + y+ z = 2015
Chứng minh trong 3 số x;y;z có ít nhất 1 số = 2015
cho 3 số thực x,y,z>0 thỏa mãn xyz=1 và 1/x+1/y+1/z<x+y+z. Chứng minh rằng có chính xác 1 trong 3 số x, y, z lớn hơn 1
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Cho x,y,z là các số thực thỏa mãn điều kiện: \(x+y+z=3\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\).
Chứng minh rằng ít nhất một trong ba số x,y,z bằng 3.
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
Cho các số thực dương x,y,z thỏa mãn:x^2+y^2+z^2≥1/3
CMR: x^3/2x+3y+5z + y^3/2y+3z+5x + z^3/2z+3x+5y ≥1/30
GIÚP GẤP
\(P=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(P=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(x^2+y^2+z^2\right)}\)
\(P\ge\dfrac{x^2+y^2+z^2}{10}\ge\dfrac{1}{30}\)
\(P_{min}=\dfrac{1}{30}\) khi \(x=y=z=\dfrac{1}{3}\)
Cho x, y, z là 3 số thực thõa mãn điều kiện: x + y + z = 3 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
Chứng minh ít nhất 1 trong 3 số x, y, z bằng 3
Cho x, y, z là 3 số thực thõa mãn điều kiện: x + y + z = 3 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
Chứng minh ít nhất 1 trong 3 số x, y, z bằng 3
1/x + 1/y + 1/z = 1/3 = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+zx).(x+y+z) = xyz
<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz = xyz
<=> x^2y+xy^2+y^2z+zy^2+z^2x+zx^2+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc z+x = 0
<=> z=3 hoặc x=3 hoặc y=3
=> ĐPCM
Tk mk nha