tìm số tự nhiên n để D=n^5- n+2 là số chính phương (n>=2)
Tìm số tự nhiên \(n\) để \(D=n^5-n+2\) là số chính phương.
Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy nếu \(5|n\), \(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)
Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).
Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
tìm số tự nhiên n để:
D=n^5-n+2 là số chính phương
Ta có:
\(n^5-n\) luôn chia hết cho \(5\) với mọi \(n\in Z\)
Thật vậy, \(n^5-n=n\left(n^4-1\right)=\left(n^2-1\right).n.\left(n^2+1\right)\)
Với \(n=5k\) thì \(n\) chia hết cho \(5\)
Với \(n=5k+1\) hay \(n=5k-1\) thì \(n^2-1\) chia hết cho \(5\)
Với \(n=5k+2\) hay \(n=5k-2\) thì \(n^2+1\) chia hết cho \(5\)
Do đó, \(n^5-n+2\) chia cho \(5\) thì dư \(2\)
Khi đó, \(D\) phải có chữ số tận cùng là \(2\) và \(7\)
Đối chiếu với khái niệm về số chính phương, thì \(D\) không thỏa mãn các điều kiện trên để là số chính phương.
Vậy, không có giá trị \(n\) để \(D\) là số chính phương
bạn có thể giải cụ thể cho mk đk k?
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tìm số tự nhiên n để
A) n^2-n+2 là số chính phương
B) n^5-n+2 là số chính phương
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Tìm số tự nhiên n để M=n^5-n+2 là một số chính phương
tìm n ( n là số tự nhiên ) để :
n+5 và n+30 đều là 2 số chính phương
giả sử :
\(\hept{\begin{cases}a^2=n+5\\b^2=n+30\end{cases}\Rightarrow b^2-a^2=25}\) mà rõ ràng a,b là hai số tự nhiên và a<b
nên ta có : \(\left(b-a\right)\left(b+a\right)=5^2\Rightarrow\hept{\begin{cases}b-a=1\\b+a=25\end{cases}\Rightarrow\hept{\begin{cases}a=12\\b=13\end{cases}\Rightarrow}n=139}\)