Biết rằng đường thẳng cắt mặt phẳng (P) : x + y + z - 10 = 0 tại điểm M. Tọa độ điểm M là:
A. M 2 ; 5 2 ; 9 2
B. M - 8 3 ; - 26 3 ; - 11 2
C. M 14 3 ; - 1 6 ; 11 2
D. Đáp án khác
Trong không gian với hệ tọa độ Oxy, cho đường thẳng ∆ : x 2 = y - 3 - 1 = z + 2 3 cắt mặt phẳng (P): x-2y+z+1=0 tại điểm M. Khi đó tọa độ điểm M là
Trong mặt phẳng tọa độ Oxy cho điểm M(1,-1)và hai đường thẳng có phương trình (d1):x - y - 1 = 0 và (d2) 2x+y-5=0. Gọi A là giao điểm của 2 đường thẳng trên . Biết rằng có 2 đường thẳng (d) đi qua M cắt 2 đường thẳng trên tại B,C sao cho tam giác ABC có BC=3AB .Tìm phương trình đường thẳng của 2 đường thẳng đó
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 = 9 , điểm M(1;1;2) và mặt phẳng (P): x+y+z-4=0 . Gọi ∆ là đường thẳng đi qua M, thuộc (P) và cắt (S) tại hai điểm A, B sao cho AB nhỏ nhất. Biết rằng ∆ có một vecto chỉ phương là u ⇀ (1;a;b), tính T=a-b
Đáp án C
Ta có: M ∈ ( P )
O M 2 = 6 < R 2 = 9 ⇒ M nằm trong mặt cầu ⇒ (P) cắt mặt cầu thành 1 hình tròn (C)
Gọi H là tâm hình tròn (C)
Để AB nhỏ nhất thì A B ⊥ H M
Vì
O là tâm mặt cầu và O (0; 0; 0)
Phương trình OH: x = t y = t z = t
là một vecto chỉ phương của AB
Chọn là vecto chỉ phương của AB
Thì
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10=0 và đường thẳng d: x + 2 2 = y - 1 1 = z - 1 - 1 . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN
A. MN=4 33
B. MN=2 26 , 5
C. MN=4 16 , 5
D. MN=2 33
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 2 x - y + z - 10 = 0 và đường thẳng d : x + 2 2 = y - 1 1 = z - 1 - 1 Đường thẳng ∆ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6
Đáp án D
Ta có d đi qua N(2;5;2) chỉ phương u d → = ( 1 ; 2 ; 1 ) đi qua N'(2;1;2) chỉ phương u d ' → = ( 1 ; - 2 ; 1 )
Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢
Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).
Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(R) đi qua A(a;0;0) => a=2
Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(Q) đi qua B(0;0;b) => b=4
Vậy T = a+b=6
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), A’(0;0;b). Gọi (P) là mặt phẳng chứa d và d’; H là giao điểm của đường thẳng AA’ và mặt phẳng (P). Một đường thẳng thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d’ lần lượt tại B, B’. Hai đường thẳng AB, A’B’ cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính a+b
A. 8
B. 9
C. -9
D. 6
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10 = 0 và đường thẳng . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.
A . M N = 4 33
B . M N = 2 26 , 5
C . M N = 4 16 , 5
D . M N = 2 33
Chọn C
Vì N = Δ ∩ d nên N ∈ d, do đó N(-2+2t; 1+t; 1-t). Mà A (1;3;2) là trung điểm MN nên
Vì M = Δ ∩ (P) nên M ∈ (P), do đó 2(4-2t)-(5-t)+(3+t)-10=0 ⇔ t= -2.
Suy ra M (8;7;1) và N (-6;-1;3).