Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yugbcd
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 11 2021 lúc 18:30

Bài 4:

Gọi số sách vở khối 6,7,8,9 quyên góp lần lượt là a,b,c,d(quyển)(a,b,c,d∈N*)

Áp dụng t/c dtsbn:

\(\dfrac{a}{8}=\dfrac{b}{7}=\dfrac{c}{6}=\dfrac{d}{5}=\dfrac{a-c}{8-6}=\dfrac{80}{2}=40\)

\(\Rightarrow\left\{{}\begin{matrix}a=40.8=320\\b=40.7=280\\c=40.6=240\\d=40.5=200\end{matrix}\right.\)(nhận)

Vậy...

Bài 5:

Gọi số giấy vụn của lớp 8,7,6 lần lượt là a,b,c(kg)(a,b,c>0)

Áp dụng t/c dtsbn:

\(\dfrac{a}{7}=\dfrac{b}{8}=\dfrac{c}{9}=\dfrac{c-a}{9-7}=\dfrac{80}{2}=40\)

\(\Rightarrow\left\{{}\begin{matrix}a=40.7=280\\b=40.8=320\\c=40.9=360\end{matrix}\right.\)(nhận)

Vậy...

muma
Xem chi tiết
muma
Xem chi tiết
Nguyễn Tuấn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 9:33

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔCDM

Thanh Hoàng Thanh
16 tháng 12 2021 lúc 17:22

a) Xét tam giác ABM và tam giác CDM có:

+ AM = CM (cho M là trung điểm của AC).

+ BM = DM (gt).

\(\widehat{AMB}=\widehat{CMD}\) (2 góc đối đỉnh).

\(\Rightarrow\)  Tam giác ABM = Tam giác CDM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{DCM}\) (Tam giác ABM = Tam giác CDM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) AB // CD (dhnb).

c) Xét tam giác ABN và tam giác ECN có:

+ BN = CN (N là trung điểm của BC).

\(\widehat{ANN}=\widehat{ENC}\) 2 góc đối đỉnh).

\(\widehat{ABN}=\widehat{ECN}\) (do AB // CD).

\(\Rightarrow\) Tam giác ABN = Tam giác ECN (g - c - g).

\(\Rightarrow\) CE = AB (2 cạnh tương ứng).

Mà AB = CD (Tam giác ABM = Tam giác CDM).

\(\Rightarrow\) CE = CD (cùng = AB).

\(\Rightarrow\) C là trung điểm của DE (đpcm).

d) Xét tam giác BDE có:

+ M là trung điểm của BD (do MD = MB).

+ C là trung điểm của DE (cmt).

\(\Rightarrow\) MC là đường trung bình.

\(\Rightarrow\) MC // BE và MC = \(\dfrac{1}{2}\) BE (Tính chất đường trung bình trong tam giác).

Lại có: MC = \(\dfrac{1}{2}\) MF (do MC = MF).

\(\Rightarrow\) BE = MF.

Xét tứ giác BMEF có:

+ BE = MF (cmt).

+ BE // MF (MC // BE; C thuộc MF).

\(\Rightarrow\) Tứ giác BMEF là hình bình hành (dhnb).

\(\Rightarrow\) ME cắt BF tại trung điểm của mỗi đường (Tính chất hình bình hành).

Mà O là trung điểm của ME (gt).

\(\Rightarrow\) O là trung điểm của BF.

\(\Rightarrow\) 3 điểm B; O; F thẳng hàng (đpcm).

..âsas
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 9:35

a:

\(AB=\dfrac{AC}{2}\)

\(AD=DC=\dfrac{CA}{2}\)

Do đó: AB=AD=DC

Xét ΔAHB vuông tại H và ΔCED vuông tại E có

AB=CD(cmt)

\(\widehat{HAB}=\widehat{ECD}\left(=90^0-\widehat{HBA}\right)\)

Do đó: ΔAHB=ΔCED

b: DE\(\perp\)BC

AH\(\perp\)BC

Do đó: DE//AH

Xét ΔCAH có

D là trung điểm của AC

DE//AH

Do đó: E là trung điểm của CH

=>EC=EH

Xét ΔDHC có

DE là đường cao

DE là đường trung tuyến

Do đó: ΔDHC cân tại D

c: ΔABD vuông tại A

mà AI là đường trung tuyến

nên \(AI=\dfrac{1}{2}BD\left(1\right)\)

ΔBED vuông tại E

mà EI là đường trung tuyến

nên \(EI=\dfrac{1}{2}BD\left(2\right)\)
Từ (1) và (2) suy ra AI=EI

ΔAHB=ΔCED

=>AH=CE

mà CE=EH

nên AH=EH

XétΔAHI và ΔEHI có

HA=HE

HI chung

AI=EI

Do đó: ΔAHI=ΔEHI

d: Xét ΔIDE có ID=IE

nên ΔIDE cân tại I

IK//BC

BC\(\perp\)DE

Do đó: IK\(\perp\)DE

ΔIDE cân tại I

mà IK là đường cao

nên IK là phân giác của góc DIE

=>\(\widehat{DIK}=\widehat{EIK}\)

Xét ΔIKD và ΔIKE có

IK chung

\(\widehat{KID}=\widehat{KIE}\)

ID=IE

Do đó: ΔIKD=ΔIKE

f: Xét tứ giác ADEB có

\(\widehat{DAB}+\widehat{DEB}=90^0+90^0=180^0\)

=>ADEB là tứ giác nội tiếp

=>\(\widehat{AED}=\widehat{ABD}=45^0\)

..âsas
Xem chi tiết
muma
Xem chi tiết
AMD ryzen 7-5700X
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 21:49

a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có

BH chung

\(\widehat{ABH}=\widehat{DBH}\)

Do đó: ΔBAH=ΔBDH

toitenla
Xem chi tiết
Phạm Tuấn Anh
19 tháng 11 2021 lúc 18:26

đáp án "E" nha,k cho mik nha banh