Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quách Kim Ngân
Xem chi tiết
Đinh Quang Hiệp
9 tháng 3 2017 lúc 21:00

A=7+7^3+7^5+..............+7^999

  =[7+7^3]+[7^5+7^7]+..............+[7^997+7^999] 

  =7[1+7^2]+7^5[1+7^2]+..............+7^997[1+7^2]

  =7[1+49]+7^5[1+49]+................7^997[1+49]

  =7*50+7^5*50+...................+7^997*50

  =350+7^4*7*50+.................+7^996*7*50

  =350+7^4*350+................+7^996*350

  =350[1+7^4+................+7^996]

vì 350 chia hết cho 35 nên A chia hết cho 35

Nguyễn bruh
29 tháng 9 2023 lúc 23:25

\(_{^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }\veebar\circledcircℕ^∗\Phi}\)

Trần Văn Thuyết
Xem chi tiết
Vua hải tặc ZORO
9 tháng 1 2016 lúc 13:14

A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35

pham thi minh
9 tháng 1 2016 lúc 13:14

khoooooooooooooooooooooooooooooooooooooooooooo

Nguyễn Minh Quang
Xem chi tiết
xát thủ vô hình
26 tháng 8 2017 lúc 19:19

56454

Inuyasa
26 tháng 8 2017 lúc 19:21

=56454 nha bn

chúc các bn hok tốt

Tiến Vỹ
26 tháng 8 2017 lúc 19:21

56454 nha bạn

nguyen thi thuy
Xem chi tiết
Akai Haruma
14 tháng 9 lúc 22:44

Lời giải:

Hiển nhiên $A\vdots 7$ do các số hạng đều chia hết cho 7.

Lại có:

$A=(7+7^3)+(7^5+7^7)+....+(7^{1997}+7^{1999})$

$=7(1+7^2)+7^5(1+7^2)+...+7^{1997}(1+7^2)$
$=(1+7^2)(7+7^5+...+7^{1997})$
$=50(7+7^5+...+7^{1997})\vdots 5$

Vậy $A\vdots 7, A\vdots 5$. Mà $(7,5)=1$

$\Rightarrow A\vdots 35$

lương thị thúy tuyên
Xem chi tiết
Đỗ Lê Tú Linh
4 tháng 12 2015 lúc 21:38

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

Nguyễn Thùy Duyên
Xem chi tiết
Nhóc_Siêu Phàm
22 tháng 11 2017 lúc 21:54
Ta có: A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2) A=7×50+7^5×50+...7^1997×50 A=350+7^4×350+...7^1996×350 A=35×10+7^4×35×10+...+7^1996×35×10 A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
Nhóc_Siêu Phàm
22 tháng 11 2017 lúc 21:56

Ta có:

A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)

A=7×50+7^5×50+...7^1997×50

A=350+7^4×350+...7^1996×350

A=35×10+7^4×35×10+...+7^1996×35×10

A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35

Nhóc_Siêu Phàm
22 tháng 11 2017 lúc 21:57

Phần trước của tớ bị sai nha !

Lê Thanh Dương
Xem chi tiết
Đinh Đức Hùng
21 tháng 7 2017 lúc 10:43

Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé

a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)

b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)

Trịnh Thị Minh Ánh
Xem chi tiết
Trần Minh Hoàng
1 tháng 10 2017 lúc 14:41

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

JANG MI
Xem chi tiết
nghia
26 tháng 8 2017 lúc 19:58

\(A=7+7^3+7^5+......+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)

\(A=350+7^4.350+.......+7^{1996}.350\)

\(A=350.\left(1+7^4+......+7^{1996}\right)\)

\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)

\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)