Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Tính môđun của số phức z+i.
A. z + i = 5 2
B. z + i = 41
C. z + i = 2 41
D. z + i = 3 5
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Biết số phức z thỏa mãn đồng thời hai điều kiện: z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Tính môđun của số phức z +i.
A. z + i = 61
B. z + i = 5 2
C. z + i = 3 5
D. z + i = 2 41
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Tính mô đun của số phức z + i.
A. z + i = 61
B. z + i = 5 2
C. z + i = 3 5
D. z + i = 2 41
Hỏi có bao nhiêu số phức z thỏa mãn đồng thời điều kiện z − i = 4 và z là số thuần ảo?
A. 1.
B. 3.
C. 4.
D. 2.
Đáp án D
Gọi z = x + y i , x , y ∈ ℝ .
Ta có x 2 + y − 1 2 = 16, x = 0 ⇒ y = − 3 y = 5 .
Vậy có 2 số phức thỏa mãn đề bài
Tổng các phần thực của các số phức z thỏa mãn đồng thời hai điều kiện:
|z-1|=1 (1+i)( z ¯ -i) có phần ảo bằng 1
A. 2
B. 3
C. 0
D. 1
Xét các số phức z = a +bi thỏa mãn đồng thời hai điều kiện z = z + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P = a + 2b là:
Xét các số phức z = a + bi, (a,b ∈ R) thỏa mãn đồng thời hai điều kiện z = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P = a + 2b là:
A. P = - 61 10
B. P = - 252 50
C. P = - 41 5
D. P = - 18 5
Đáp án A.
Phương pháp:
Từ z = z ¯ + 4 - 3 i tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB
Cách giải: Gọi z = x + ui ta có:
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.
Ta có: dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.
Gọi I là trung điểm của AB ta có và A B → = 3 ; - 4
Phương trình đường trung trực của AB là
Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình
Xét các số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P = a + 2 b là:
A. P = - 252 50 .
B. P = - 41 5 .
C. P = - 61 10 .
D. P = - 18 5
Tổng các phần thực của các số phức z thỏa mãn đồng thời hai điều kiện: z − 1 = 1 , 1 + i z ¯ − i có phần ảo bằng 1
A. 0
B. 1
C. 2
D. 3