Tổng các phần thực của các số phức z thỏa mãn đồng thời hai điều kiện: z − 1 = 1 , 1 + i z ¯ − i có phần ảo bằng 1
A. 0
B. 1
C. 2
D. 3
Cho z là số phức thỏa mãn điều kiện 2 z - 1 1 + i + z + 1 1 - i = 2 - 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1 .
A. 25
B. 1
C. 49
D. 41
Gọi S là tập hợp các số phức z có phần thực và phần ảo đều là các số nguyên đồng thời thoả mãn hai điều kiện: z - 3 - 4 i ≤ 2 và z + z ¯ ≤ z - z ¯ . Số phần tử của tập S bằng
A. 11.
B. 12.
C. 13.
D. 10.
Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z + 1 + i = z ¯ + i . Tổng phần thực và phần ảo của số phức z bằng:
A. 3 10
B. - 1 5
C. - 3 10
C. 1 5
Cho số phức z thỏa mãn 5 z ¯ + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a + b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Trong các số phức z thỏa mãn điều kiện z − 2 − 4 i = z − 2 i . Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Cho các số phức z, z1, z2 thay đổi thỏa mãn các điều kiện sau: i z + 2 i + 4 = 3 ; phần thực của z1 bằng 2; phần ảo của z2 bằng 1. Tìm giá trị nhỏ nhất của biểu thức T = z - z 1 2 + z - z 2 2
A. 9
B. 2
C. 5
D. 4