Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Anh Thu
Xem chi tiết
Phạm Nguyễn Hùng Nguyên
Xem chi tiết
soyeon_Tiểu bàng giải
4 tháng 11 2016 lúc 13:43

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

Lê Hải Trung
Xem chi tiết
Nguyễn Tiến Dũng
22 tháng 2 2018 lúc 20:53

Tham khảo nhé

https://olm.vn/hoi-dap/tim-kiem?id=1164587&subject=1&q=+++++++++++2a+b+c+da+=a+2b+c+db+=a+b+2c+dc+=a+b+c+2dd+T%C3%ADnh+M=a+bc+d++b+cd+a++c+da+b++d+ab+c+++++++++++

Lê Anh Tú
22 tháng 2 2018 lúc 21:02

Ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=4\)

=>2a+b+c+d=4a

=>2a=b+c+d

Tương tự ta có:2b=a+c+d 2c=a+b+d 2d=a+b+c

=>2a+2b=b+c+d+a+c+d

=>a+b+2c+2d

=>a+b=2c+2d

\(\Rightarrow\frac{a+b}{c+d}=2\)

Tương tự ta có:\(b+\frac{c}{d}+a=2\)

                       \(c+\frac{d}{a}+b=2\)

                       \(d+\frac{a}{b}+c=2\)

=>M=2+2+2+2=8 

Hoang Anh Dũng
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 11 2019 lúc 21:46

Bạn tham khảo tại đây:

Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
hoa tulips
2 tháng 12 2019 lúc 21:52

:v phép tính ở đâu đấy thk kia

Khách vãng lai đã xóa
Le Thi Khanh Huyen
Xem chi tiết
Minh Triều
14 tháng 7 2015 lúc 22:17

trừ mỗi tỉ lệ cho 1 ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{2a+b+c+d}{a}-\frac{a}{a}=\frac{a+2b+c+d}{b}-\frac{b}{b}=\frac{a+b+2c+d}{c}-\frac{c}{c}=\frac{a+b+c+2d}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+Nếu a+b+c+d\(\ne\)0 thì a=b=c=d lúc đó 

M=1+1+1+1=4

+Nếu a+b+c+d=0 thì a+b=-(c+d);b+c=-(d+a);c+d=-(a+b);d+a=-(b+c) lúc đó:

M=(-1)+(-1)+(-1)+(-1)=-4

✓ ℍɠŞ_ŦƦùM $₦G ✓
14 tháng 7 2015 lúc 22:28

\(\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2a+2b+3c+3d}{c+d}\)

\(=\frac{2\left(a+b\right)}{c+d}+\frac{3\left(c+d\right)}{c+d}=2.\frac{a+b}{c+d}+3\)

\(\frac{2a+b+c+d}{a}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+b+c+2d}{a+d}=\frac{3a+3d+2c+2b}{a+d}\)

\(=\frac{3\left(a+d\right)}{a+d}+\frac{2\left(b+c\right)}{a+d}=3+2.\frac{b+c}{a+d}\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{2a+b+c+d+a+2b+c+d}{a+b}=\frac{3a+3b+2c+2d}{a+b}\)

\(=\frac{3\left(a+b\right)}{a+b}+\frac{2\left(c+d\right)}{a+b}=3+\frac{c+d}{a+b}.2\)

\(\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+2b+c+d+a+b+2c+d}{b+c}=\frac{3b+3c+2a+2d}{b+c}\)

\(=\frac{3\left(b+c\right)}{b+c}+\frac{2\left(a+d\right)}{b+c}=3+\frac{a+d}{b+c}.2\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\Rightarrow\frac{2a+b+c+d}{a}+\frac{a+2b+c+d}{b}+\frac{a+b+2c+d}{c}+\frac{a+b+c+2d}{d}=5.4=20\)

\(\Rightarrow3+\frac{a+b}{c+d}.2+3+\frac{b+c}{a+d}.2+3+\frac{c+d}{a+b}.2+3+\frac{d+a}{b+c}.2=20\)

\(\Rightarrow2.\left(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\right)=20-3-3-3-3\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=8:2=4\)

vậy \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=4\)

 

vuong hien duc
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 9 2018 lúc 16:29

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\)

\(=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2\left(a+b\right)}{c+d}+3=\)

Tương tự

\(=\frac{2\left(b+c\right)}{d+a}+3=\)

\(=\frac{2\left(c+d\right)}{a+b}+3=\)

\(=\frac{2\left(d+a\right)}{b+c}+3\)

\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+3=\frac{2\left(b+c\right)}{d+a}+3=\frac{2\left(c+d\right)}{a+b}+3=\frac{2\left(d+a\right)}{b+c}+3\)

\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=\frac{2\left(b+c\right)}{d+a}=\frac{2\left(c+d\right)}{a+b}=\frac{2\left(d+a\right)}{b+c}=\)

\(=\frac{2\left(a+b\right)+2\left(b+c\right)+2\left(c+d\right)+2\left(d+a\right)}{c+d+d+a+a+b+b+c}=\frac{4\left(a+b+c+d\right)}{2\left(a+b+c+d\right)}=2\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

Evil
Xem chi tiết
Phùng Minh Quân
12 tháng 10 2018 lúc 19:42

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\)

Suy ra : 

\(a+b=-\left(c+d\right)\)

\(b+c=-\left(d+a\right)\)

\(c+a=-\left(b+d\right)\)

\(d+a=-\left(b+c\right)\)

Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(M=-4\)

+) Xét \(a+b+c+d\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)

Do đó : 

\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)

\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)

\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)

\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)

\(\Leftrightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow\)\(M=1+1+1+1=4\)

Vậy \(M=-4\) hoặc \(M=4\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
12 tháng 10 2018 lúc 20:15

Ta có : 

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)

+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)

+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)

+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)

\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(M=\frac{a+b+c}{a+b+c}=1\)

Vậy \(M=1\)

Chúc bạn học tốt ~ 

Giúp mình với nha
Xem chi tiết
le an phuong
30 tháng 12 2017 lúc 15:38

<br class="Apple-interchange-newline"><div id="inner-editor"></div>2a+b+c+da =a+2b+c+db =a+b+2c+dc =a+b+c+2dd =2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2ca+b+c+d =4

=>2a+b+c+d=4a

=>2a=b+c+d

Tương tự ta có:2b=a+c+d

2c=a+b+d

2d=a+b+c

=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d

=>a+b=2c+2d

=>a+b/c+d=2

Tương tự ta có:b+c/d+a=2

c+d/a+b=2

d+a/b+c=2

=>M=2+2+2+2=8

 
 
ythw ảo
Xem chi tiết
Huỳnh phương Khuê
19 tháng 3 2015 lúc 20:13

mỗi tỉ số đã cho đều bớt 1 ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{2b+a+c+d}{b}-1=\frac{2c+a+b+d}{c}-1=\frac{2d+a+b+c}{d}-1\)

\(\frac{a+b+c+d}{a}=\frac{b+a+c+d}{b}=\frac{c+a+b+d}{c}=\frac{d+a+b+c}{d}\)

Nếu a,b,c,d  khác 0 thì a=b=c=d \(\Rightarrow\)M =1+1+1+1=4

nếu a+b+c+d=0  suy ra a+b=-(c+d)

                                   b+c=-(a+d)

                                   c+d = -(a+b)

                                   a+d = -(b+c)

lúc đó M= -1+(-1)+(-1)+(-1) = -4