cho a, b, c , d thuoc z. cm (a-b )(b-c)(c-d)(d-a) chia het cho 12
cho a,b,c,d thuoc Z thoa man a+b+c=0.chung minh a^5+b^5+c^5 chia het cho 30
cho a, b, c ,d thuoc N va a> b > c > d CMR P =[a-b] -[a-c] . [a-d] .[b-c] .[ b- d] . [ c - d] chia het 12
cho a,b,c thuoc z va a+b+c chia het cho 6 . cm a3+b3+c3 chia het cho 6
Cho a,b,c,d thuộc Z
CM:(a-b).(a-c).(a-d).(b-c).(b-d).(c-d) chia hết cho 12
Cho a;b;c;d \(\in\) Z .CM : (a-b).(a-c).(a-d).(b-c).(b-d).(c-d) chia hết 12
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
1) Cho 3x-2y/4=2z-4x/3=ay-3z/2.chứng tỏ x/2=y/3=z/4
2) tìm x,y,z biết x+16/9=y-25/16=z+9/25 và (2x^3)-1=15
3) cho a/b=c/d chứng tỏ (a-b/c-d)^2=ab/cd và (a+b/c+d)^3=a^3-b^3/c^3-d^3
4) Cmr:
10^n-18n-1 chia het cho 27
27^8-3^21 chia het cho 26
8^12-2^33-2^30 chia het cho 53
a) so sanh a/b (b>0) va a+n/b+n (n thuoc N*)
b)cho a,b,c thuoc z b>0
so sanh a/b vs a+2016/b+2016
c) cho a/b<c/d (b.d >0)
cm: a+c/b+d<c/d
6)Cho a,b,c,d là các số nguyen.Chứng minh rằng:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia het cho 12