Cho tam giác ABC có AB=AC và MB=MC, M thuộc BC. Chọn câu sai
A. ∆ A M C = ∆ B M C
B. A M ⊥ B C
C. B A M ^ = C A M ^
D. ∆ A M B = ∆ A M C
Cho tam giác ABC có AB=AC và MB=MC(M ∈ BC). Chọn câu sai
A. Δ A M C = Δ B C M
B. A M ⊥ B C
C. B A M ^ = C A M ^
D. Δ A M B = Δ A M C
cho tam giác ABC và tam giác A'B'C' có Ab = A'B', AC = A"C'. M thuộc BC sao cho MC = MB, M' thuộc B'C' sao cho M'B' = M'C' và AM = A'M'. Chứng minh tam giác ABC = tam giác A'B'C'
Cho tam giác ABC và M là điểm tùy ý thuộc miền trong tam giác.
a) Chứng minh rằng MB + MC < AB + AC
b) Áp dụng kết quả câu a), chứng minh rằng \(\frac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho MB : MC = 2 : 3. Kẻ MH // AC (H thuộc AB) và MK // AB (K thuộc AC).
a) Tính MB, MC biết BC = 25cm
b) Tính chu vi tam giác ABC biết chu vi KMC bằng 30cm
c) Chứng minh rằng HB.MC = BM.KM
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho MB : MC = 2 : 3. Kẻ MH // AC (H thuộc AB) và MK // AB (K thuộc AC).
a) Tính MB, MC biết BC = 25cm
b) Tính chu vi tam giác ABC biết chu vi KMC bằng 30cm
c) Chứng minh rằng HB.MC = BM.KM
cho tam giac abc đều ab=3 .M là điểm bất kì thuộc tam giac ,vẽ MA' //AB (A' thuộc BC),MB' //BC (B' thuộc AC ) MC' // AC (C' thuộc AB) .Tính MA' +MB'+MC' =?
Cho tam giác ABC đều, M là một điểm thuộc miền của tam giác. Qua M kẻ đường thẳng song song với BC cắt AB ở D, đường thẳng song song với AC cắt BC ở E, đường thẳng song song với AB cắt AC ở F.
a) Có bao nhiêu hình thang cân tất cả? Vì sao?
b) Cho biết MA = a, MB = b, MC = c. Chứng minh 3 đoạn thẳng MA, MB, MC thỏa mãn bất đẳng thức tam giác và tính chu vi tam giác DEF theo a, b, c.
Giúp giùm câu c,d
Cho tam giác ABC cân tại A. Kẻ am vuông BC tại M.
a) C/m tam giác ABM=ACM và MB=MC
b) Biết AB=20cm: BC=24cm. Tính độ dài đoạn thẳng MB và AM.
c) Kẻ MH vuông AB tại H và MK vuông AC tại K. C/m tam giác AHK cân tại A.
d) tính MH.
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
cho tam giác ABC, M thuộc tam giác ABC. Tia BM giao AC tại I.
a)CMR: AM<MI+IA.
b) MB+MA< AC+CB.
c) CMR: (AB+AC+BC):2<MA+MB+MC<AB+AC+BC