Tìm x, biết (x-1).(x+2).(-x-3)=0
Bài 1: Tìm x, biết 4 – 2(x + 1) = 2
Bài 2. Tìm x biết: |2x – 3| - 1 = 2
Bài 3. Tìm x, biết: 3 1 3 x + 16 3 4 = - 13,25
Bài 4: Tìm x biết: 60% x + 2 3 x = - 76
Bài 5: Tìm x, biết: a) 11 - (-53 + x) = 97 b) -(x + 84) + 213 = -16
thanks
Bài 1:
Ta có: \(4-2\left(x+1\right)=2\)
\(\Leftrightarrow2\left(x+1\right)=2\)
\(\Leftrightarrow x+1=1\)
hay x=0
Bài 2:
Ta có: \(\left|2x-3\right|-1=2\)
\(\Leftrightarrow\left|2x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Tìm x thuộc Z biết
(x-1)×(x^3+1)×(x^2-49) = 0
Vì : \(\left(x-1\right)\left(x^3+1\right)\left(x^2-49\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^3+1=0\\x^2-49=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0+1=1\\x^3=-1\Rightarrow x=-1\\x^2=49\Rightarrow x=7\end{cases}}}\)
Vậy ...
x-1=0=> x=1
hoặc
x^3+1=0=> x=-1
hoặc
x^2-49=0=> x=7 hoặc -7
kết luận
x=+-7, +-1
Tìm x,y biết :
(x^2+2x)=0
x^3-4x=0
3x+4chia hết cho x+1
(2x+1).(y-3)= -10
x2 + 2x = 0
x(x + 2) = 0
=> x = 0 hoặc x + 2 = 0
=> x = 0 hoặc x = -2
x3 - 4x = 0
x(x2 - 4) = 0
=> x = 0 hoặc x2 - 4 = 0
x = 0 hoặc x2 = 4
=> x = 0 hoặc x = 2 hoặc x = -2
Tìm x biết x.(x-2)(x+2)=0 x^3+x^2+x+1=0?
a,x=0hoac x-2=0 hoac x+2 =0
x=0 hoac x=2 hoac x=-2
Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x 5 3
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x 1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 13 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11: So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a) A 123.123và B 124.122; b) A 987.984và B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14
Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a) A 2019.2021 và B 20202 b)
2021
2022
10 1
10 1
M
và
2022
2023
10 1
10 1
N
.
Bài 13: Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272 và
B = 201273 - 1. So sánh A và B.
Bài 14: Cho D 1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ
Bài 1: Hãy so sánh:
a. 1619 và 825 b. 2711 và 818 . c) 1619 và 825 d) 6255 và 1257 .
Bài 2: Hãy so sánh:
a. 1287 và 424 b. 536 và 1124 c. 3260 và 8150 d. 3500 và 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a) 3210 và 2350 b) 231 và 321 c) 430 và 3 24 . . 10
Bài 4: Hãy so sánh:
a) 32n và 23n * n N b) 5300 và 3500 .
Bài 5: Hãy so sánh:
a) 32 2 n n và 9n12 b) 256n và 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a) 202303 và 303202 . b) 2115 và 27 49 5 8 . . c)3.275 và 2435 .
Bài 2: Hãy so sánh:
a) 2015 2015 2015 2014 và 2015 2015 2016 2015 . b) 2015 2015 10 9 và 201610.
Bài 3: Hãy so sánh:
a) A 72 72 45 44 và B 72 72 44 43 . b) 3775 và 7150 .
Bài 4: Hãy so sánh:
a) 523 và 6 5 . 22 b) 7 2 . 13 và 216 c) 1512 và 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 và 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30 và 3 24 . 10 .
Bài 2: Hãy so sánh:
a) 2225 và 3151 b) 19920 và 200315 c) 291 và 536.
Bài 3: Hãy so sánh:
a) 9920 và 9 11 10 30 . b) 96142 và 100 23 . 93 .
Bài 4: Hãy so sánh:
a) 10750 và 7375 b) 3339 và 1121.
Bài 5: Hãy so sánh:
a) A 123456789 và B 567891234 . b) 111979 và 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a) 1720 và 3115 b) 19920 và 10024 c) 3111 và 1714 .
Bài 2: Hãy so sánh
a) 111979 và 371321 b) 10750 và 5175 c) 3201 và 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28 .
Tìm x , biết: x(x−2)+(x−2)=0. *
AMột đáp án khác
Bx=2 hoặc x=1
Cx= -2 hoặc x= 1
Dx=2 hoặc x= -1
Tìm x biết
x/3+x^2/2=0
(x^2+3)(x+1)+x=-1
\(\frac{x}{3}+\frac{x^2}{2}=0\)
\(\Leftrightarrow\frac{2x+3x^2}{6}=0\Leftrightarrow3x^2+2x=0\)
\(\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)=0\)
Mà \(x^2+4>0\)nên \(x+1=0\Leftrightarrow x=-1\)
tìm x,y biết:
a)2.(x-2/3)+(x-1/2)=3.(x-1/3)
b)|x+y|+|2.x+3|=0
Tìm x thuộc Q, biết:
a, ( x +1 ) ( x - 2 ) < 0
b, ( x - 2 ) ( x + 2/3 ) > 0
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1< 0\\x-2>0\end{cases}\) hoặc \(\begin{cases}x+1>0\\x-2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< -1\\x>2\end{cases}\) (loại) hoặc \(\begin{cases}x>-1\\x< 2\end{cases}\)
\(\Leftrightarrow-1< x< 2\)
b)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\) hoặc \(\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\)
\(\Leftrightarrow x>2\) hoặc \(x< -\frac{2}{3}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow x+1\) và \(x-2\) trái dấu nhau.
Mà \(x-2< x+1\) với mọi x
\(\Rightarrow\begin{cases}x-2< 0\\x+1>0\end{cases}\Leftrightarrow\begin{cases}x< 2\\x>-1\end{cases}\Leftrightarrow-1< x< 2\)
\(\Rightarrow x\in\left\{0;1\right\}\)