Cho hình thoi ABCD có A=60 tính tỉ số \(\frac{AC^2}{AB^2}\)
GIÚP MÌNH VỚI NHA!!! LÀM ƠN!
Cho hình thoi ABCD có góc A = 60o. Hãy tính tỉ số \(\frac{AC^2}{AB^2}\)
Gọi giao điểm hai đường chéo hình thoi là I
Vì hình thoi có góc A =60 nên tam giác ABD đều => AB = AD = DB
Ta có AC = 2AI
\(AI^2=AB^2-BI^2=AB^2-\frac{BD^2}{4}=AB^2-\frac{AB^2}{4}=\frac{3AB^2}{4}\)
\(\Rightarrow\frac{AC^2}{AB^2}=\frac{4AI^2}{AB^2}=\frac{4\frac{3AB^2}{4}}{AB^2}=3\)
bn giỏi thật nhưng mk có chỗ ko hỉu!!!
56657675684462454363462456346457474627685
cho hình thoi abcd có góc A = 60 tính tỉ số \(\frac{AC^2}{AB^2}\)
Cho hình thoi ABCD có góc A=60 độ.Chứng minh AC^2/AB^2=3
bạn tự vẽ hình nha ( mình nản vẽ hình lắm )
ta có AB = 6 cm
lại có góc ABC = 60 độ
suy ra : △ABC là △ đều ( △cân có một góc bằng 60 độ )
suy ra AC bằng 6 cm suy ra AO = CO = 3 cm
xét △ABO vuông tại O có :
theo định lý py-ta-go ta có AB2 = BO2+ AO2
=> BO2 = 36 - 9 = 25 (cm)
=> BO = 5 cm
=> BD = 10 cm
vậy diện tích hình thoi là:
1/2.6.10 = 30cm2 ( điều cần tìm )
Bài 1:
Cho hình thoi có tỉ số 2 đường chéo là 3:4 . Tính tỉ số diện tích hình tròn ngoại tiếp và diên tích hình tròn nội tiếp hình thoi
Bài 2:
Cho tam giác ABC có A=90 độ . Góc B=60 độ , AB=a . Vẽ đường tròn (B;AB) và (C;CA) . Tính diền tich phần chung của 2 đường tròn
1.Cho hình thoi ABCD có cạnh =a.Biết góc B=60 độ
a)C/m tam giác ABC đều
b)Tính diện tích hình thoi ABCD theo a
2.Cho hình vuông ABCD có độ dài cạnh =a.Điểm M bất kì trên đường thẳng AC.Kẻ ME vuông góc AB tại E và MF vuông góc AC tại F.Tìm vị trí của điểm M trên AC để diện tích tam giác CEF lớn nhất
1) hình tự vẽ nhé
a) Vì ABCD là hình thoi (gt)
\(\Rightarrow AB=BC\left(đn\right)\)
\(\Rightarrow\Delta ABC\)cân tại B
Mà \(\widehat{B}=60^0\)
\(\Rightarrow\Delta ABC\)là tam giác đều
b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)
Gọi O là giao điểm 2 đường chéo BD và AC
Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)
\(\Rightarrow BO\perp AC\)
Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC
\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)
\(\Rightarrow O\)là trung điểm của AC
\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)
Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:
\(BO^2+OC^2=BC^2\)
\(BO^2+\frac{1}{4}a^2=a^2\)
\(BO^2=\frac{3}{4}a^2\)
\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)
Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)
\(=\frac{\sqrt{3}}{4}a^2\)
CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)
\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)
Cho hình thoi ABCD có góc A=60 độ, AB=10cm. Tính diện tích hình thoi ABCD.
Kẻ BH vuông góc AD
Tam giác ABH là tam giác đều nên BH=AD=10(cm)
Suy ra SABCD=10.10=100(cm2)
Cho hình thoi ABCD có diện tích bằng 50√3cm^2 và AC=10cm
1/ Tính độ dài BD và AB
2/ Tính số đo các góc của hình thoi ABCD
Giúp em câu 2 với ạ, em cảm ơn.
1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)
Gọi O là giao điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)
Xét Δ vuông OAB có :
\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)
\(\Rightarrow AB=10\left(cm\right)\)
2) Xét Δ vuông OAB có :
\(AB=2OA=10\left(cm\right)\)
⇒ Δ OAB là Δ nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)
mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)
1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 20cm, HB = 9cm. Tính HC
2. Cho hình thoi ABCD có cạnh 10cm, góc A bằng 60°. Tinh diện tích hình thoi ABCD
3. Cho tam giác ABC vuông tại A, vẽ đường tròn nội tiếp và đường tròn ngoại tiếp tam giác ABC lần lượt có bán kính r,R. Chứng minh AB + AC = 2(r + R)
4. Cho tam giác ABC có góc BAC bằng 120°. Chứng minh BC^2 = AB^2 + AC^2 + AB.AC
5. Cho đường thẳng (d) : y = ax + 3 (a khác 0). Cho biết khoảng cách từ gốc tọa độ đến (d) là \(\frac{\sqrt{ }}{ }\) (3 căn 2)/2. Xác định a
Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9